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NISC in OT-hybrid model

Advantages

I OT realization from various models/assumptions

I Efficiency

I Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai’88]
I Information-theoretical NISC for NC0 in OT-hybrid.
I NISC in OT-hybrid using black-box PRG.
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I NOT reusable secure.
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Our Results
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Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

There is no reusable NISC for certain functionalities in rOT-hybrid
model with black-box simulation, assuming OWF.
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Our Results

Impossible to patch the protocol against malicious adversaries in
reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

There is no reusable NISC for certain functionalities in rOT-hybrid
model with black-box simulation, assuming OWF.

Expansive alternative:
Semi-honest NISC + reusable NIZK =⇒ reusable NISC.
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I Sender can prove (a1,b1,a2,b2, . . .) satisfies arithmetic constraints
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I Side product: reusable DV-NIZK in rOLE-hybrid model.



Certified rOLE

RS

rOLE
w

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs



Certified rOLE

R

w ← F

S
rOLE

w

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs



Certified rOLE

R

w ← F

S

r ← F

rOLE
wa, r

aw + r

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs



Certified rOLE

R

w ← F

S

r ← F

rOLE
wa, r

aw + r

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target

Commitment(a)

rOLE outputs



Certified rOLE

R

w ← F

S

r ← F

rOLE
wa, r

aw + r

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a)

rOLE outputs



Certified rOLE

R

w ← F
x̂i ← F

S

r ← F

rOLE
wa, r

aw + r

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a)

rOLE outputs



Certified rOLE

R

w ← F
x̂i ← F

S

r ← F
r ′← F

rOLE
wa, r

aw + r

rOLE
x̂ir , r ′

r x̂i + r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

aˆ̂xi +b+ r ′

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a)

rOLE outputs



Certified rOLE

R

w ← F
x̂i ← F

S

r ← F
r ′← F

rOLE
wa, r

aw + r

rOLE
x̂ir , r ′

r x̂i + r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

aˆ̂xi +b+ r ′

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs



Certified rOLE

R

w ← F
x̂i ← F

S

r ← F
r ′← F

rOLE
wa, r

aw + r

rOLE
x̂ir , r ′

r x̂i + r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

aˆ̂xi +b+ r ′

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs



Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output



Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output



Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output



Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output



Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output



Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender: Deviate =⇒ random output



Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong”
not yet

UC-secure against Sender: Deviate =⇒ random output



Our Results

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

get ax +b ∈ F

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.



Our Results

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

get ax +b ∈ F

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.



rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Efficient simulator against
unbounded malicious sender



rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc( x )

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Efficient simulator against
unbounded malicious sender



rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc( x )

Enc(a− r )

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Efficient simulator against
unbounded malicious sender



rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc( x )

Enc(a− r )

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Efficient simulator against
unbounded malicious sender



rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc( x )

Enc(a− r )

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Enc( 0 )

Efficient simulator against
unbounded malicious sender



rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc( x )

Enc(a− r )

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Enc( 0 )

Enc( a )

Enc( b )

Efficient simulator against
unbounded malicious sender



rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc( x )

Enc(a− r )

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Enc( 0 )

Enc( a )

Enc( b )

Efficient simulator against
unbounded malicious sender



rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc( x )

Enc(a− r )

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Enc( 0 )

Enc( a )

Enc( b )

Efficient simulator against
unbounded malicious sender



Paillier Encryption Scheme

KeyGen public key, trapdoor

x Encr ( x ) xEncrypt Decrypt

randomness r trapdoor

Enc0( x ) xDecrypt

Encr ( x ) · Encs( y ) = Encr+s( x + y )



Paillier Encryption Scheme

KeyGen public key, trapdoor

x Encr ( x ) xEncrypt Decrypt

randomness r trapdoor

Enc0( x ) xDecrypt

Encr ( x ) · Encs( y ) = Encr+s( x + y )



Paillier Encryption Scheme

KeyGen public key, trapdoor

x Encr ( x ) xEncrypt Decrypt

randomness r trapdoor

Enc0( x ) xDecrypt

Encr ( x ) · Encs( y ) = Encr+s( x + y )



Paillier Encryption Scheme

KeyGen public key, trapdoor

x Encr ( x ) xEncrypt Decrypt

randomness r trapdoor

Enc0( x ) xDecrypt

Encr ( x ) · Encs( y ) = Encr+s( x + y )



rOLE from Paillier

S R

xa,b

“Strong” UC-security requires a machenism to detect malicious sender



rOLE from Paillier

S R

xa,b

CRS (Mode I)
h = Enc0( 1 )

w = Encα ( 0 )

W0 = Encβ ( 1 )

“Strong” UC-security requires a machenism to detect malicious sender



rOLE from Paillier

S R

xa,b
sample sk

CRS (Mode I)
h = Enc0( 1 )

w = Encα ( 0 )

W0 = Encβ ( 1 )

W1 = w skW x
0 = Encxβ+α·sk( x )

“Strong” UC-security requires a machenism to detect malicious sender



rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode I)
h = Enc0( 1 )

w = Encα ( 0 )

W0 = Encβ ( 1 )

W1 = w skW x
0 = Encxβ+α·sk( x )

v = w r = Encrα ( 0 )

V0 = haW−r
0 = Enc−rβ ( a− r )

V1 = hbW r
1 = Encrxβ+rα·sk( b+ rx )

“Strong” UC-security requires a machenism to detect malicious sender



rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode I)
h = Enc0( 1 )

w = Encα ( 0 )

W0 = Encβ ( 1 )

W1 = w skW x
0 = Encxβ+α·sk( x )

v = w r = Encrα ( 0 )

V0 = haW−r
0 = Enc−rβ ( a− r )

V1 = hbW r
1 = Encrxβ+rα·sk( b+ rx )

v skV x
0 V1 = Enc0( ax +b )

“Strong” UC-security requires a machenism to detect malicious sender



rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode II)
h = Enc0( 1 )

w = Encα ( 0 )

W0 = Encβ ( 0 )

W1 = w skW x
0 = Encxβ+α·sk( x )

v = w r = Encrα ( 0 )

V0 = haW−r
0 = Enc−rβ ( a− r )

V1 = hbW r
1 = Encrxβ+rα·sk( b+ rx )

v skV x
0 V1 = Enc0( ax +b )

“Strong” UC-security requires a machenism to detect malicious sender



rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode II)
h = Enc0( 1 )

w = Encα ( 0 )

W0 = Encβ ( 0 )

W1 = w skW x
0 = Encxβ+α·sk( 0 )

v = w r = Encrα ( 0 )

V0 = haW−r
0 = Enc−rβ ( a− r )

V1 = hbW r
1 = Encrxβ+rα·sk( b+ rx )

v skV x
0 V1 = Enc0( ax +b )

“Strong” UC-security requires a machenism to detect malicious sender



rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode II)
h = Enc0( 1 )

w = Encα ( 0 )

W0 = Encβ ( 0 )

W1 = w skW x
0 = Encxβ+α·sk( 0 )

v = w r = Encrα ( 0 )

V0 = haW−r
0 = Enc−rβ ( a )

V1 = hbW r
1 = Encrxβ+rα·sk( b )

v skV x
0 V1 = Enc0( ax +b )

“Strong” UC-security requires a machenism to detect malicious sender



rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode II)
h = Enc0( 1 )

w = Encα ( 0 )

W0 = Encβ ( 0 )

W1 = w skW x
0 = Encxβ+α·sk( 0 )

v = w r = Encrα ( 0 )

V0 = haW−r
0 = Enc−rβ ( a )

V1 = hbW r
1 = Encrxβ+rα·sk( b )

v skV x
0 V1 = Enc0( ax +b )

“Strong” UC-security requires a machenism to detect malicious sender



Our Results

I (!∃ IT rNISC/rOT) There is no information-theoretical reusable
NISC protocol in rOT-hybrid model.

I (IT rNISC/rOLE for arithmetic NC1) Information-theoretical
UC-secure reusable NISC protocol for any arithmetic NC1 circuit
or arithmetic branching program in rOLE-hybrid model.

I (IT rNIZK/rOLE) Information-theoretical UC-secure reusable
NIZK protocol in rOLE-hybrid model; O(1) calls per gate.

I Previous two + Garbled circuit → (rNISC/rOLE)
UC-secure reusable NISC for general circuits; IT secure against
sender; poly(λ ) calls per gate.

I (rOLE protocol from Paillier) UC-secure reusable 2-message
OLE protocol in CRS model; one-side IT secure; c.c. O(1) group
elements per call.
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