
Reusable Non-Interactive
Secure Computation

Melissa Chase (MSR Redmond)
Yevgeniy Dodis (NYU)

Yuval Ishai (Technion)
Daniel Kraschewski (TNG Technology Consulting)

Tianren Liu (MIT → UW)
Rafail Ostrovsky (UCLA)

Vinod Vaikuntanathan (MIT)

Aug 22, 2019

Non-Interactive Secure Computation (NISC)

E.g. FHE =⇒ Semi-honest NISC

R

x

S

y

Goal: receiver gets f (x ,y) for a public function f .

Non-Interactive Secure Computation (NISC)

E.g. FHE =⇒ Semi-honest NISC

R

x

S

y

Goal: receiver gets f (x ,y) for a public function f .

Non-Interactive Secure Computation (NISC)

E.g. FHE =⇒ Semi-honest NISC

R

x

S

y

Goal: receiver gets f (x ,y) for a public function f .

Non-Interactive Secure Computation (NISC)

E.g. FHE =⇒ Semi-honest NISC

R

x

S

y

f (x ,y)

Goal: receiver gets f (x ,y) for a public function f .

Non-Interactive Secure Computation (NISC)

E.g. FHE =⇒ Semi-honest NISC

R

x

S

y

f (x ,y)

Goal: receiver gets f (x ,y) for a public function f .

Non-Interactive Secure Computation (NISC)

E.g. FHE =⇒ Semi-honest NISC

R

x

S

y

Enc(x)

f (x ,y)

Goal: receiver gets f (x ,y) for a public function f .

Non-Interactive Secure Computation (NISC)

E.g. FHE =⇒ Semi-honest NISC

R

x

S

y

Enc(x)

Enc(f (x ,y))

f (x ,y)

Goal: receiver gets f (x ,y) for a public function f .

Garbled Circuit + OT =⇒ Semi-honest NISC [Kilian’88]

R

x

S

y

Garbled Circuit + OT =⇒ Semi-honest NISC [Kilian’88]

R

x

S

y

C̃ and tags

w1,0 w1,1

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

Garbled Circuit + OT =⇒ Semi-honest NISC [Kilian’88]

R

x

S

y

C̃ and tags

w1,0 w1,1

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

x =

1

0

0

1
...

1

Garbled Circuit + OT =⇒ Semi-honest NISC [Kilian’88]

R

x

S

y

C̃ and tags

w1,0 w1,1

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

x =

1

0

0

1
...

1

Garbled Circuit + OT =⇒ Semi-honest NISC [Kilian’88]

R

x

S

y

C̃ and tags

w1,0 w1,1

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

x =

1

0

0

1
...

1

C̃ and (wi ,xi)
n
i=1 reveals f (x ,y)

and nothing else computationally.

Garbled Circuit + OT =⇒ Semi-honest NISC [Kilian’88]

R

x

S

y

C̃ and tags

w1,0 w1,1

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

x =

1

0

0

1
...

1

C̃ and (wi ,xi)
n
i=1 reveals f (x ,y)

and nothing else computationally.

C̃

Garbled Circuit + OT =⇒ Semi-honest NISC [Kilian’88]

R

x

S

y

C̃ and tags

w1,0 w1,1

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

x =

1

0

0

1
...

1

C̃ and (wi ,xi)
n
i=1 reveals f (x ,y)

and nothing else computationally.

C̃

OT
wi ,0,wi ,1 xi

wi ,xi

NISC in OT-hybrid model

Advantages

I OT realization from various models/assumptions

I Efficiency

I Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai’88]
I Information-theoretical NISC for NC0 in OT-hybrid.
I NISC in OT-hybrid using black-box PRG.

Disadvantages

I NOT reusable secure.

NISC in OT-hybrid model

Advantages

I OT realization from various models/assumptions

I Efficiency

I Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai’88]
I Information-theoretical NISC for NC0 in OT-hybrid.
I NISC in OT-hybrid using black-box PRG.

Disadvantages

I NOT reusable secure.

NISC in OT-hybrid model

Advantages

I OT realization from various models/assumptions

I Efficiency

I Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai’88]
I Information-theoretical NISC for NC0 in OT-hybrid.
I NISC in OT-hybrid using black-box PRG.

Disadvantages

I NOT reusable secure.

Reusable NISC

R

x

S

y

Reusable NISC

R

x

S

y

“encryption” of
my data Cx

Reusable NISC

R

x

S

y

“encryption” of
my data Cx

msg

Reusable NISC

R

x

S

y

“encryption” of
my data Cx

msg

f (x ,y)

Reusable NISC

R

x

S

y

“encryption” of
my data Cx

msg

f (x ,y)

Reusability: Safe for receiver to
reuse first msg and randomness

Reusable NISC

R

x

S

y

“encryption” of
my data Cx

msg

f (x ,y)

Reusability: Safe for receiver to
reuse first msg and randomness

S′

y ′,y ′′

Reusable NISC

R

x

S

y

“encryption” of
my data Cx

msg

f (x ,y)

Reusability: Safe for receiver to
reuse first msg and randomness

S′

y ′,y ′′

msg′, msg′′

Reusable NISC

R

x

S

y

“encryption” of
my data Cx

msg

f (x ,y)

Reusability: Safe for receiver to
reuse first msg and randomness

S′

y ′,y ′′

msg′, msg′′

f (x ,y ′)

f (x ,y ′′)

Reusable NISC

R

x

S

y

“encryption” of
my data Cx

msg

f (x ,y)

Reusability: Safe for receiver to
reuse first msg and randomness

S′

y ′,y ′′

msg′, msg′′

f (x ,y ′)

f (x ,y ′′)

NISC in OT-hybrid model

R

x

S

y

C̃ and tags

w1,0 w1,1

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

x =

1

0

0

1
...

1

C̃

reusable
OT

wi ,0,wi ,1 xi
wi ,xi

NISC in OT-hybrid model

R

x

S

y

C̃ and tags

w1,0 mess

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

x =

1

0

0

1
...

1

C̃

reusable
OT

wi ,0,wi ,1 xi
wi ,xi

NISC in OT-hybrid model

R

x

S

y

C̃ and tags

w1,0 mess

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

x =

1

0

0

1
...

1

Replacing w1,1 changes ’s behaviour =⇒ x [1] = 1
thus NO security against malicious sender.

C̃

reusable
OT

wi ,0,wi ,1 xi
wi ,xi

NISC in OT-hybrid model

R

x

S

y

C̃ and tags

w1,0 mess

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

x =

1

0

0

1
...

1

C̃

reusable
OT

wi ,0,wi ,1 xi
wi ,xi

NISC in OT-hybrid model + one-shot UC-security [IKOPS’11]

R

x

S

y

C̃ and tags

w1,0 mess

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

let OT input be
encoding x̃ =

1

0

0

1
...

1

C̃

reusable
OT

wi ,0,wi ,1 x̃i
wi ,x̃i

NISC in OT-hybrid model + one-shot UC-security [IKOPS’11]

R

x

S

y

C̃ and tags

w1,0 mess

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

let OT input be
encoding x̃ =

1

0

0

1
...

1

A few bits of x̃ leaks no information about x .

C̃

reusable
OT

wi ,0,wi ,1 x̃i
wi ,x̃i

NISC in OT-hybrid model + one-shot UC-security [IKOPS’11]

R

x

S

y

C̃ and tags

w1,0 mess

w2,0 w2,1

w3,0 w3,1

w4,0 w4,1
...

wn,0 wn,1

let OT input be
encoding x̃ =

1

0

0

1
...

1

Repeat the attack to learn the whole encoding x̃
thus NO reusable security against malicious sender.

C̃

reusable
OT

wi ,0,wi ,1 x̃i
wi ,x̃i

Our Results

Impossible to patch the protocol against malicious adversaries in
reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

There is no reusable NISC for certain functionalities in rOT-hybrid
model with black-box simulation, assuming OWF.

Our Results

Impossible to patch the protocol against malicious adversaries in
reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

There is no reusable NISC for certain functionalities in rOT-hybrid
model with black-box simulation, assuming OWF.

Our Results

Impossible to patch the protocol against malicious adversaries in
reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

There is no reusable NISC for certain functionalities in rOT-hybrid
model with black-box simulation, assuming OWF.

Expansive alternative:
Semi-honest NISC + reusable NIZK =⇒ reusable NISC.

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

Degenerate into OT if |F|= 2.

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.

Security loss ≈ 1
|F|

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

get ax +b ∈ F

Degenerate into OT if |F|= 2.

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.

Security loss ≈ 1
|F|

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

get ax +b ∈ F

Degenerate into OT if |F|= 2.

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.

Security loss ≈ 1
|F|

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

get ax +b ∈ F

Degenerate into OT if |F|= 2.

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.

Security loss ≈ 1
|F|

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

get ax +b ∈ FDegenerate into OT if |F|= 2.

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.

Security loss ≈ 1
|F|

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

get ax +b ∈ FDegenerate into OT if |F|= 2.

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.

Security loss ≈ 1
|F|

How to Lift One-shot Security to Reusability

R

x

S

y

rOLE
ai ,bi x̃i

ai x̃i +bi

f (x ,y)

I UC-security: ∃ an efficient simulator S
S (a1,b1,a2,b2, . . .)→ y∗

I No Abort (optional): When abnormal behavior was detected,
output f (x ,0)

I Difficulty: distribution y∗ =⇒ f (x ,y∗) has entropy in ideal world
=⇒ leak information of receiver’s randomness in real world

I “Strong” UC-security =⇒ Reusability
The simulator is deterministic

How to Lift One-shot Security to Reusability

R

x

S

y

rOLE
ai ,bi x̃i

ai x̃i +bi

f (x ,y)

I UC-security: ∃ an efficient simulator S
S (a1,b1,a2,b2, . . .)→ y∗

I No Abort (optional): When abnormal behavior was detected,
output f (x ,0)

I Difficulty: distribution y∗ =⇒ f (x ,y∗) has entropy in ideal world
=⇒ leak information of receiver’s randomness in real world

I “Strong” UC-security =⇒ Reusability
The simulator is deterministic

How to Lift One-shot Security to Reusability

R

x

S

///y /

rOLE
ai ,bi x̃i

ai x̃i +bi

f (x ,y)

I UC-security: ∃ an efficient simulator S
S (a1,b1,a2,b2, . . .)→ y∗

I No Abort (optional): When abnormal behavior was detected,
output f (x ,0)

I Difficulty: distribution y∗ =⇒ f (x ,y∗) has entropy in ideal world
=⇒ leak information of receiver’s randomness in real world

I “Strong” UC-security =⇒ Reusability
The simulator is deterministic

How to Lift One-shot Security to Reusability

R

x

S

///y /

rOLE
ai ,bi x̃i

ai x̃i +bi

f (x ,y∗)
I UC-security: ∃ an efficient simulator S

S (a1,b1,a2,b2, . . .)→ y∗

I No Abort (optional): When abnormal behavior was detected,
output f (x ,0)

I Difficulty: distribution y∗ =⇒ f (x ,y∗) has entropy in ideal world
=⇒ leak information of receiver’s randomness in real world

I “Strong” UC-security =⇒ Reusability
The simulator is deterministic

How to Lift One-shot Security to Reusability

R

x

S

///y /

rOLE
ai ,bi x̃i

ai x̃i +bi

f (x ,y∗)
I UC-security: ∃ an efficient simulator S

S (a1,b1,a2,b2, . . .)→ y∗

I No Abort (optional): When abnormal behavior was detected,
output f (x ,0)

I Difficulty: distribution y∗ =⇒ f (x ,y∗) has entropy in ideal world
=⇒ leak information of receiver’s randomness in real world

I “Strong” UC-security =⇒ Reusability
The simulator is deterministic

How to Lift One-shot Security to Reusability

R

x

S

///y /

rOLE
ai ,bi x̃i

ai x̃i +bi

f (x ,y∗)
I UC-security: ∃ an efficient simulator S

S (a1,b1,a2,b2, . . .)→ y∗

I No Abort (optional): When abnormal behavior was detected,
output f (x ,0)

I Difficulty: distribution y∗ =⇒ f (x ,y∗) has entropy in ideal world
=⇒ leak information of receiver’s randomness in real world

I “Strong” UC-security =⇒ Reusability
The simulator is deterministic

How to Lift One-shot Security to Reusability

R

x

S

///y /

rOLE
ai ,bi x̃i

ai x̃i +bi

f (x ,y∗)
I UC-security: ∃ an efficient simulator S

S (a1,b1,a2,b2, . . .)→ y∗

I No Abort (optional): When abnormal behavior was detected,
output f (x ,0)

I Difficulty: distribution y∗ =⇒ f (x ,y∗) has entropy in ideal world
=⇒ leak information of receiver’s randomness in real world

I “Strong” UC-security =⇒ Reusability
The simulator is deterministic

How to Lift One-shot Security to Reusability

R

x

S

///y /

rOLE
ai ,bi x̃i

ai x̃i +bi

f (x ,y∗)
I UC-security: ∃ an efficient simulator S

S (a1,b1,a2,b2, . . .)→ y∗

I No Abort (optional): When abnormal behavior was detected,
output f (x ,0)

I Difficulty: distribution y∗ =⇒ f (x ,y∗) has entropy in ideal world
=⇒ leak information of receiver’s randomness in real world

I “Strong” UC-security =⇒ Reusability
The simulator is deterministic

How to Lift One-shot Security to Reusability

R

x

S

///y /

rOLE
ai ,bi x̃i

ai x̃i +bi

f (x ,y∗)
I UC-security: ∃ an efficient simulator S

S (a1,b1,a2,b2, . . .)→ y∗

I No Abort (optional): When abnormal behavior was detected,
output f (x ,0)

I Difficulty: distribution y∗ =⇒ f (x ,y∗) has entropy in ideal world
=⇒ leak information of receiver’s randomness in real world

I “Strong” UC-security =⇒ Reusability
The simulator is deterministic

Overview: rNISC in rOLE-hybrid model

R

x ∈ Fn

S

y ∈ Fn

I Assume f is an arithmetic NC1 circuit or
an arithmetic branching program over F

I [IK’02,AIK’14] encode y 7→ (A,b)
s.t. Ax +b reveals f (x ,y) and nothing else

I Against malicious sender: detect if (A,b) is honestly generated,
i.e. satisfies some simple arithmetic constraints

Certified rOLE →

{
Ax +b, if (A,b) satisfies constraints

⊥, otherwise

Overview: rNISC in rOLE-hybrid model

R

x ∈ Fn

S

y ∈ Fn

I Assume f is an arithmetic NC1 circuit or
an arithmetic branching program over F

I [IK’02,AIK’14] encode y 7→ (A,b)
s.t. Ax +b reveals f (x ,y) and nothing else

I Against malicious sender: detect if (A,b) is honestly generated,
i.e. satisfies some simple arithmetic constraints

Certified rOLE →

{
Ax +b, if (A,b) satisfies constraints

⊥, otherwise

Overview: rNISC in rOLE-hybrid model

R

x ∈ Fn

S

y ∈ Fn

rOLE
A,b x

Ax +b

I Assume f is an arithmetic NC1 circuit or
an arithmetic branching program over F

I [IK’02,AIK’14] encode y 7→ (A,b)
s.t. Ax +b reveals f (x ,y) and nothing else

I Against malicious sender: detect if (A,b) is honestly generated,
i.e. satisfies some simple arithmetic constraints

Certified rOLE →

{
Ax +b, if (A,b) satisfies constraints

⊥, otherwise

Overview: rNISC in rOLE-hybrid model

R

x ∈ Fn

S

y ∈ Fn

rOLE
A,b x

Ax +b

f (x ,y)
I Assume f is an arithmetic NC1 circuit or

an arithmetic branching program over F

I [IK’02,AIK’14] encode y 7→ (A,b)
s.t. Ax +b reveals f (x ,y) and nothing else

I Against malicious sender: detect if (A,b) is honestly generated,
i.e. satisfies some simple arithmetic constraints

Certified rOLE →

{
Ax +b, if (A,b) satisfies constraints

⊥, otherwise

Overview: rNISC in rOLE-hybrid model

R

x ∈ Fn

S

y ∈ Fn

rOLE
A,b x

Ax +b

f (x ,y)
I Assume f is an arithmetic NC1 circuit or

an arithmetic branching program over F

I [IK’02,AIK’14] encode y 7→ (A,b)
s.t. Ax +b reveals f (x ,y) and nothing else

I Against malicious sender: detect if (A,b) is honestly generated,
i.e. satisfies some simple arithmetic constraints

Certified rOLE →

{
Ax +b, if (A,b) satisfies constraints

⊥, otherwise

Overview: rNISC in rOLE-hybrid model

R

x ∈ Fn

S

y ∈ Fn

Certified
rOLE

A,b x{
Ax +b

⊥

f (x ,y)
I Assume f is an arithmetic NC1 circuit or

an arithmetic branching program over F

I [IK’02,AIK’14] encode y 7→ (A,b)
s.t. Ax +b reveals f (x ,y) and nothing else

I Against malicious sender: detect if (A,b) is honestly generated,
i.e. satisfies some simple arithmetic constraints

Certified rOLE →

{
Ax +b, if (A,b) satisfies constraints

⊥, otherwise

Overview: rNISC in rOLE-hybrid model

R

x ∈ Fn

S

y ∈ Fn

Certified
rOLE

A,b x{
Ax +b

⊥

f (x ,y)
I Assume f is an arithmetic NC1 circuit or

an arithmetic branching program over F

I [IK’02,AIK’14] encode y 7→ (A,b)
s.t. Ax +b reveals f (x ,y) and nothing else

I Against malicious sender: detect if (A,b) is honestly generated,
i.e. satisfies some simple arithmetic constraints

Certified rOLE →

{
Ax +b, if (A,b) satisfies constraints

⊥, otherwise

Certified rOLE

RS

I Sender can prove (a1,b1,a2,b2, . . .) satisfies arithmetic constraints

I Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

RS
rOLE

a1,b1 x1
a1x1 +b1

rOLE
a2,b2 x2

a2x2 +b2

rOLE
a3,b3 x3

a3x3 +b3

...

I Sender can prove (a1,b1,a2,b2, . . .) satisfies arithmetic constraints

I Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

RS
rOLE

a1,b1 x1
a1x1 +b1

rOLE
a2,b2 x2

a2x2 +b2

rOLE
a3,b3 x3

a3x3 +b3

...

Certified rOLE

I Sender can prove (a1,b1,a2,b2, . . .) satisfies arithmetic constraints

I Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

RS
rOLE

a1,b1 x1
a1x1 +b1

rOLE
a2,b2 x2

a2x2 +b2

rOLE
a3,b3 x3

a3x3 +b3

...

Certified rOLE

I Sender can prove (a1,b1,a2,b2, . . .) satisfies arithmetic constraints

I Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

RS
rOLE

a1,b1 x1
a1x1 +b1

rOLE
a2,b2 x2

a2x2 +b2

rOLE
a3,b3 x3

a3x3 +b3

...

Certified rOLE

I Sender can prove (a1,b1,a2,b2, . . .) satisfies arithmetic constraints

I Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

RS
rOLE

a1,b1 x1
a1x1 +b1

rOLE
a2,b2 x2

a2x2 +b2

rOLE
a3,b3 x3

a3x3 +b3

...

Certified rOLE

I Sender can prove (a1,b1,a2,b2, . . .) satisfies arithmetic constraints

I Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

RS
rOLE

a1,b1 x1
a1x1 +b1

rOLE
a2,b2 x2

a2x2 +b2

rOLE
a3,b3 x3

a3x3 +b3

...

Certified rOLE

I Sender can prove (a1,b1,a2,b2, . . .) satisfies arithmetic constraints
ai = aj for some (i , j) for general constraints → see eprint

I Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

RS

rOLE
w

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

Certified rOLE

R

w ← F

S
rOLE

w

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

Certified rOLE

R

w ← F

S

r ← F

rOLE
wa, r

aw + r

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

Certified rOLE

R

w ← F

S

r ← F

rOLE
wa, r

aw + r

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target

Commitment(a)

rOLE outputs

Certified rOLE

R

w ← F

S

r ← F

rOLE
wa, r

aw + r

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a)

rOLE outputs

Certified rOLE

R

w ← F
x̂i ← F

S

r ← F

rOLE
wa, r

aw + r

rOLE
x̂i

rOLE
ˆ̂xi = xi −wx̂i

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a)

rOLE outputs

Certified rOLE

R

w ← F
x̂i ← F

S

r ← F
r ′← F

rOLE
wa, r

aw + r

rOLE
x̂ir , r ′

r x̂i + r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

aˆ̂xi +b+ r ′

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a)

rOLE outputs

Certified rOLE

R

w ← F
x̂i ← F

S

r ← F
r ′← F

rOLE
wa, r

aw + r

rOLE
x̂ir , r ′

r x̂i + r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

aˆ̂xi +b+ r ′

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

Certified rOLE

R

w ← F
x̂i ← F

S

r ← F
r ′← F

rOLE
wa, r

aw + r

rOLE
x̂ir , r ′

r x̂i + r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

aˆ̂xi +b+ r ′

...

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + (aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output

Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output

Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output

Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output

Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender:

Deviate =⇒ random output

Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong” UC-secure against Sender: Deviate =⇒ random output

Certified rOLE

R

w , x̂i ← F

S

r , r ′← F

rOLE
wa, r

rOLE
x̂ir , r ′

rOLE
ˆ̂xi = xi −wx̂ia,b+ r ′

Certified rOLE

axi +b = (aw + r) · x̂i − (r x̂i + r ′) + e(aˆ̂xi +b+ r ′)

Target Commitment(a) rOLE outputs

I Correctness: Above equation.

I UC-secure against Receiver: xi := wx̂i + ˆ̂xi .

I “Strong”
not yet

UC-secure against Sender: Deviate =⇒ random output

Our Results

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

get ax +b ∈ F

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.

Our Results

NEW primitive: Oblivious linear function evaluation (OLE)

S R

x ∈ Fa,b ∈ F

get ax +b ∈ F

Theorem 2

An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable
OLE protocol in the CRS setting,
under Paillier assumption.

rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Efficient simulator against
unbounded malicious sender

rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc(x)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Efficient simulator against
unbounded malicious sender

rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc(x)

Enc(a− r)

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Efficient simulator against
unbounded malicious sender

rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc(x)

Enc(a− r)

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Efficient simulator against
unbounded malicious sender

rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc(x)

Enc(a− r)

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Enc(0)

Efficient simulator against
unbounded malicious sender

rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc(x)

Enc(a− r)

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Enc(0)

Enc(a)

Enc(b)

Efficient simulator against
unbounded malicious sender

rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc(x)

Enc(a− r)

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Enc(0)

Enc(a)

Enc(b)

Efficient simulator against
unbounded malicious sender

rOLE from Paillier

Dual-mode (similar to OT from [PVW’08])

D1 is indistinguishable from D2

Mode I

S R

xa,b
crs←D1

Enc(x)

Enc(a− r)

Enc(b+ rx)

Efficient simulator against
unbounded malicious receiver

Mode II

S R

xa,b
crs←D2

Enc(0)

Enc(a)

Enc(b)

Efficient simulator against
unbounded malicious sender

Paillier Encryption Scheme

KeyGen public key, trapdoor

x Encr (x) xEncrypt Decrypt

randomness r trapdoor

Enc0(x) xDecrypt

Encr (x) · Encs(y) = Encr+s(x + y)

Paillier Encryption Scheme

KeyGen public key, trapdoor

x Encr (x) xEncrypt Decrypt

randomness r trapdoor

Enc0(x) xDecrypt

Encr (x) · Encs(y) = Encr+s(x + y)

Paillier Encryption Scheme

KeyGen public key, trapdoor

x Encr (x) xEncrypt Decrypt

randomness r trapdoor

Enc0(x) xDecrypt

Encr (x) · Encs(y) = Encr+s(x + y)

Paillier Encryption Scheme

KeyGen public key, trapdoor

x Encr (x) xEncrypt Decrypt

randomness r trapdoor

Enc0(x) xDecrypt

Encr (x) · Encs(y) = Encr+s(x + y)

rOLE from Paillier

S R

xa,b

“Strong” UC-security requires a machenism to detect malicious sender

rOLE from Paillier

S R

xa,b

CRS (Mode I)
h = Enc0(1)

w = Encα (0)

W0 = Encβ (1)

“Strong” UC-security requires a machenism to detect malicious sender

rOLE from Paillier

S R

xa,b
sample sk

CRS (Mode I)
h = Enc0(1)

w = Encα (0)

W0 = Encβ (1)

W1 = w skW x
0 = Encxβ+α·sk(x)

“Strong” UC-security requires a machenism to detect malicious sender

rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode I)
h = Enc0(1)

w = Encα (0)

W0 = Encβ (1)

W1 = w skW x
0 = Encxβ+α·sk(x)

v = w r = Encrα (0)

V0 = haW−r
0 = Enc−rβ (a− r)

V1 = hbW r
1 = Encrxβ+rα·sk(b+ rx)

“Strong” UC-security requires a machenism to detect malicious sender

rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode I)
h = Enc0(1)

w = Encα (0)

W0 = Encβ (1)

W1 = w skW x
0 = Encxβ+α·sk(x)

v = w r = Encrα (0)

V0 = haW−r
0 = Enc−rβ (a− r)

V1 = hbW r
1 = Encrxβ+rα·sk(b+ rx)

v skV x
0 V1 = Enc0(ax +b)

“Strong” UC-security requires a machenism to detect malicious sender

rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode II)
h = Enc0(1)

w = Encα (0)

W0 = Encβ (0)

W1 = w skW x
0 = Encxβ+α·sk(x)

v = w r = Encrα (0)

V0 = haW−r
0 = Enc−rβ (a− r)

V1 = hbW r
1 = Encrxβ+rα·sk(b+ rx)

v skV x
0 V1 = Enc0(ax +b)

“Strong” UC-security requires a machenism to detect malicious sender

rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode II)
h = Enc0(1)

w = Encα (0)

W0 = Encβ (0)

W1 = w skW x
0 = Encxβ+α·sk(0)

v = w r = Encrα (0)

V0 = haW−r
0 = Enc−rβ (a− r)

V1 = hbW r
1 = Encrxβ+rα·sk(b+ rx)

v skV x
0 V1 = Enc0(ax +b)

“Strong” UC-security requires a machenism to detect malicious sender

rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode II)
h = Enc0(1)

w = Encα (0)

W0 = Encβ (0)

W1 = w skW x
0 = Encxβ+α·sk(0)

v = w r = Encrα (0)

V0 = haW−r
0 = Enc−rβ (a)

V1 = hbW r
1 = Encrxβ+rα·sk(b)

v skV x
0 V1 = Enc0(ax +b)

“Strong” UC-security requires a machenism to detect malicious sender

rOLE from Paillier

S R

xa,b
sample sksample r

CRS (Mode II)
h = Enc0(1)

w = Encα (0)

W0 = Encβ (0)

W1 = w skW x
0 = Encxβ+α·sk(0)

v = w r = Encrα (0)

V0 = haW−r
0 = Enc−rβ (a)

V1 = hbW r
1 = Encrxβ+rα·sk(b)

v skV x
0 V1 = Enc0(ax +b)

“Strong” UC-security requires a machenism to detect malicious sender

Our Results

I (!∃ IT rNISC/rOT) There is no information-theoretical reusable
NISC protocol in rOT-hybrid model.

I (IT rNISC/rOLE for arithmetic NC1) Information-theoretical
UC-secure reusable NISC protocol for any arithmetic NC1 circuit
or arithmetic branching program in rOLE-hybrid model.

I (IT rNIZK/rOLE) Information-theoretical UC-secure reusable
NIZK protocol in rOLE-hybrid model; O(1) calls per gate.

I Previous two + Garbled circuit → (rNISC/rOLE)
UC-secure reusable NISC for general circuits; IT secure against
sender; poly(λ) calls per gate.

I (rOLE protocol from Paillier) UC-secure reusable 2-message
OLE protocol in CRS model; one-side IT secure; c.c. O(1) group
elements per call.

Our Results

I rNISC in CRS model assuming the security of Paillier encryption.

I rNIZK in CRS model assuming the security of Paillier encryption.
c.c. O(1) group elements per gate.

I Statistical designated-verifier NIZK argument for NP in CRS
model assuming Paillier.

I Push cryptograph to offline phase.
In offline phase: prepare random ((a,b),(x ,ax +b));
In online phase: consume the prepared randomness.

Our Results

I rNISC in CRS model assuming the security of Paillier encryption.

I rNIZK in CRS model assuming the security of Paillier encryption.
c.c. O(1) group elements per gate.

I Statistical designated-verifier NIZK argument for NP in CRS
model assuming Paillier.

I Push cryptograph to offline phase.
In offline phase: prepare random ((a,b),(x ,ax +b));
In online phase: consume the prepared randomness.

Our Results

I rNISC in CRS model assuming the security of Paillier encryption.

I rNIZK in CRS model assuming the security of Paillier encryption.
c.c. O(1) group elements per gate.

I Statistical designated-verifier NIZK argument for NP in CRS
model assuming Paillier.

I Push cryptograph to offline phase.
In offline phase: prepare random ((a,b),(x ,ax +b));
In online phase: consume the prepared randomness.

