Reusable Non-Interactive Secure Computation

Melissa Chase (MSR Redmond)
Yevgeniy Dodis (NYU)
Yuval Ishai (Technion)
Daniel Kraschewski (TNG Technology Consulting)
Tianren Liu (MIT \rightarrow UW)
Rafail Ostrovsky (UCLA)
Vinod Vaikuntanathan (MIT)

Aug 22, 2019

Non-Interactive Secure Computation (NISC)

Goal: receiver gets $f(x, y)$ for a public function f.

Non-Interactive Secure Computation (NISC)

Goal: receiver gets $f(x, y)$ for a public function f.

Non-Interactive Secure Computation (NISC)

Goal: receiver gets $f(x, y)$ for a public function f.

Non-Interactive Secure Computation (NISC)

Goal: receiver gets $f(x, y)$ for a public function f.

Non-Interactive Secure Computation (NISC)

E.g. $\mathrm{FHE} \Longrightarrow$ Semi-honest NISC

Goal: receiver gets $f(x, y)$ for a public function f.

Non-Interactive Secure Computation (NISC)

E.g. $\mathrm{FHE} \Longrightarrow$ Semi-honest NISC

Goal: receiver gets $f(x, y)$ for a public function f.

Non-Interactive Secure Computation (NISC)

E.g. $\mathrm{FHE} \Longrightarrow$ Semi-honest NISC

Goal: receiver gets $f(x, y)$ for a public function f.

Garbled Circuit + OT \Longrightarrow Semi-honest NISC [Kilian'88]

y

X

Garbled Circuit + OT \Longrightarrow Semi-honest NISC [Kilian'88]

	$w_{1,0}$	
and tags	$w_{1,1}$	
	$w_{2,0}$	
	$w_{3,0}$	
$w_{3,1}$		
	$w_{4,0}$	
$w_{4,1}$		
	\vdots	
	$w_{n, 0}$	

Garbled Circuit + OT \Longrightarrow Semi-honest NISC [Kilian'88]

\tilde{C} and tags	$w_{1,0}$	$w_{1,1}$
	$W_{2,0}$	$w_{2,1}$
	$W_{3,0}$	$w_{3,1}$
	$W_{4,0}$	$W_{4,1}$
	$w_{n, 0}$	$w_{n, 1}$

$x=$| 1 |
| :---: |
| 0 |
| 0 |
| 1 |
| \vdots |
| 1 |

Garbled Circuit + OT \Longrightarrow Semi-honest NISC [Kilian'88]

\tilde{C} and tags	$w_{1,0}$	$w_{1,1}$
	$W_{2,0}$	$w_{2,1}$
	$w_{3,0}$	$W_{3,1}$
	$W_{4,0}$	$W_{4,1}$
	$w_{n, 0}$	$w_{n, 1}$

$x=$| 1 |
| :---: |
| 0 |
| 0 |
| 1 |
| \vdots |
| 1 |

Garbled Circuit + OT \Longrightarrow Semi-honest NISC [Kilian'88]

\tilde{C} and tags	$w_{1,0}$	$w_{1,1}$
	$w_{2,0}$	$w_{2,1}$
	W3,0	$w_{3,1}$
	$W_{4,0}$	$W_{4,1}$
	$w_{n, 0}$	$w_{n, 1}$

$$
x=\begin{array}{|c|}
\hline 1 \\
\hline 0 \\
\hline 0 \\
\hline 1 \\
\hline \vdots \\
\hline 1 \\
\hline
\end{array}
$$

\tilde{C} and $\left(w_{i, x_{i}}\right)_{i=1}^{n}$ reveals $f(x, y)$ and nothing else computationally.

Garbled Circuit + OT \Longrightarrow Semi-honest NISC [Kilian'88]

\tilde{C} and tags	$w_{1,0}$	$w_{1,1}$
	$w_{2,0}$	$w_{2,1}$
	$w_{3,0}$	$w_{3,1}$
	$w_{4,0}$	$W_{4,1}$
	$w_{n, 0}$	$w_{n, 1}$

$x=$| 1 |
| :---: |
| 0 |
| 0 |
| 1 |
| \vdots |
| 1 |

\tilde{C} and $\left(w_{i, x_{i}}\right)_{i=1}^{n}$ reveals $f(x, y)$ and nothing else computationally.

Garbled Circuit + OT \Longrightarrow Semi-honest NISC [Kilian'88]

\tilde{C} and $\left(w_{i, x_{i}}\right)_{i=1}^{n}$ reveals $f(x, y)$ and nothing else computationally.

NISC in OT-hybrid model

Advantages

- OT realization from various models/assumptions
- Efficiency
- Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai'88]
- Information-theoretical NISC for NC 0 in OT-hybrid.
- NISC in OT-hybrid using black-box PRG.

Disadvantages

- NOT reusable secure.

NISC in OT-hybrid model

Advantages

- OT realization from various models/assumptions
- Efficiency
- Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai'88]
- Information-theoretical NISC for NC ${ }^{0}$ in OT-hybrid.
- NISC in OT-hybrid using black-box PRG.

Disadvantages

- NOT reusable secure.

NISC in OT-hybrid model

Advantages

- OT realization from various models/assumptions
- Efficiency
- Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai'88]
- Information-theoretical NISC for NC ${ }^{0}$ in OT-hybrid.
- NISC in OT-hybrid using black-box PRG.

Disadvantages

- NOT reusable secure.

Reusable NISC

Reusable NISC

Reusable NISC

Reusable NISC

Reusable NISC

Reusability: Safe for receiver to reuse first msg and randomness

Reusable NISC

Reusable NISC

Reusable NISC

Reusable NISC

NISC in OT-hybrid model

\tilde{C} and tags	$w_{1,0}$	$w_{1,1}$
	$W_{2,0}$	$w_{2,1}$
	W3,0	$w_{3,1}$
	$W_{4,0}$	$W_{4,1}$
	$w_{n, 0}$	$w_{n, 1}$

$$
x=\begin{array}{|c|}
\hline 1 \\
\hline 0 \\
\hline 0 \\
\hline 1 \\
\hline \vdots \\
\hline 1 \\
\hline
\end{array}
$$

NISC in OT-hybrid model

\tilde{C} and tags	$w_{1,0}$	mess
	$W_{2,0}$	$W_{2,1}$
	W3,0	$w_{3,1}$
	$W_{4,0}$	$W_{4,1}$
	$w_{n, 0}$	$w_{n, 1}$

$$
x=\begin{array}{|c|}
\hline 1 \\
\hline 0 \\
\hline 0 \\
\hline 1 \\
\hline \vdots \\
\hline 1 \\
\hline
\end{array}
$$

NISC in OT-hybrid model

Replacing $w_{1,1}$ changes behaviour $\Longrightarrow x[1]=1$ thus NO security against malicious sender.

NISC in OT-hybrid model

\tilde{C} and tags	$w_{1,0}$	mess
	$W_{2,0}$	$W_{2,1}$
	W3,0	$w_{3,1}$
	$W_{4,0}$	$W_{4,1}$
	$w_{n, 0}$	$w_{n, 1}$

$$
x=\begin{array}{|c|}
\hline 1 \\
\hline 0 \\
\hline 0 \\
\hline 1 \\
\hline \vdots \\
\hline 1 \\
\hline
\end{array}
$$

NISC in OT-hybrid model + one-shot UC-security [IKOPS'11]

\tilde{C} and tags	$w_{1,0}$	mess
	$W_{2,0}$	$w_{2,1}$
	W3,0	$w_{3,1}$
	$W_{4,0}$	$W_{4,1}$
	$w_{n, 0}$	$w_{n, 1}$

let OT input be \begin{tabular}{|c|}
\hline 1

encoding $\tilde{x}=$\begin{tabular}{|c|}
\hline 0

\hline

\hline

\hline
\end{tabular}

\hline 1

\hline
\end{tabular}

NISC in OT-hybrid model + one-shot UC-security [IKoPs'11]

A few bits of \tilde{x} leaks no information about x.

NISC in OT-hybrid model + one-shot UC-security [IKoPs'11]

Repeat the attack to learn the whole encoding \tilde{x} thus NO reusable security against malicious sender.

Our Results

Impossible to patch the protocol against malicious adversaries in reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

Our Results

Impossible to patch the protocol against malicious adversaries in reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.
There is no reusable NISC for certain functionalities in rOT-hybrid model with black-box simulation, assuming OWF.

Our Results

Impossible to patch the protocol against malicious adversaries in reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.
There is no reusable NISC for certain functionalities in rOT-hybrid model with black-box simulation, assuming OWF.

Expansive alternative:
Semi-honest NISC + reusable NIZK \Longrightarrow reusable NISC.

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

$$
\text { get } a x+b \in \mathbb{F}
$$

Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

$$
\text { get } a x+b \in \mathbb{F}
$$

Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

Degenerate into OT if $|\mathbb{F}|=2$.

$$
\text { get } a x+b \in \mathbb{F}
$$

Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

Our Results (continue)

NEW primitive: Oblivious linear function evaluation (OLE)

Degenerate into OT if $|\mathbb{F}|=2$.

$$
\text { get } a x+b \in \mathbb{F}
$$

Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model. Security loss $\approx \frac{1}{|\mathbb{F}|}$

Theorem 3

An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

How to Lift One-shot Security to Reusability

How to Lift One-shot Security to Reusability

- No Abort (optional): When abnormal behavior was detected, output $f(x, 0)$

How to Lift One-shot Security to Reusability
$\mathscr{S}\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right) \rightarrow y^{*}$

$$
f\left(x, y^{*}\right)
$$

\rightarrow No Abort (optional): When abnormal behavior was detected, output $f(x, 0)$

- Difficulty: distribution y^{*}

How to Lift One-shot Security to Reusability

- UC-security: \exists an efficient simulator \mathscr{S} $\mathscr{S}\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right) \rightarrow y^{*}$

$$
f\left(x, y^{*}\right)
$$

> No Abort (optional): When abnormal behavior was detected, output $f(x, 0)$

- Difficulty: distribution $y^{*} \Longrightarrow f\left(x, y^{*}\right)$ has entropy in ideal world \Longrightarrow leak information of receiver's randomness in real world

How to Lift One-shot Security to Reusability

- UC-security: \exists an efficient simulator \mathscr{S} $\mathscr{S}\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right) \rightarrow y^{*}$

$$
f\left(x, y^{*}\right)
$$

> No Abort (optional): When abnormal behavior was detected, output $f(x, 0)$

- Difficulty: distribution $y^{*} \Longrightarrow f\left(x, y^{*}\right)$ has entropy in ideal world \Longrightarrow leak information of receiver's randomness in real world

How to Lift One-shot Security to Reusability

- UC-security: \exists an efficient simulator \mathscr{S} $\mathscr{S}\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right) \rightarrow y^{*}$

$$
f\left(x, y^{*}\right)
$$

\rightarrow No Abort (optional): When abnormal behavior was detected, output $f(x, 0)$

- Difficulty: distribution $y^{*} \Longrightarrow f\left(x, y^{*}\right)$ has entropy in ideal world \Longrightarrow leak information of receiver's randomness in real world
- "Strong" UC-security \Longrightarrow Reusability

The simulator is deterministic

Overview: rNISC in rOLE-hybrid model

$$
y \in \mathbb{F}^{n}
$$

$x \in \mathbb{F}^{n}$

- Assume f is an arithmetic $\mathbf{N C}^{1}$ circuit or an arithmetic branching program over \mathbb{F}
- [IK'02,AIK'14] encode $y \mapsto(A, b)$ s.t. $A x+b$ reveals $f(x, y)$ and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Overview: rNISC in rOLE-hybrid model

$$
y \in \mathbb{F}^{n}
$$

$$
x \in \mathbb{F}^{n}
$$

- Assume f is an arithmetic $\mathbf{N C}^{1}$ circuit or an arithmetic branching program over \mathbb{F}
- [IK'02,AIK'14] encode $y \mapsto(A, b)$
s.t. $A x+b$ reveals $f(x, y)$ and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Overview: rNISC in rOLE-hybrid model

- Assume f is an arithmetic $\mathbf{N C}^{1}$ circuit or an arithmetic branching program over \mathbb{F}
- [IK'02,AIK'14] encode $y \mapsto(A, b)$
s.t. $A x+b$ reveals $f(x, y)$ and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Overview: rNISC in rOLE-hybrid model

- [IK'02,AIK'14] encode $y \mapsto(A, b)$
s.t. $A x+b$ reveals $f(x, y)$ and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Overview: rNISC in rOLE-hybrid model

- [IK'02,AIK'14] encode $y \mapsto(A, b)$
s.t. $A x+b$ reveals $f(x, y)$ and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Overview: rNISC in rOLE-hybrid model

- [IK'02,AIK'14] encode $y \mapsto(A, b)$
s.t. $A x+b$ reveals $f(x, y)$ and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Overview: rNISC in rOLE-hybrid model

- [IK'02,AIK'14] encode $y \mapsto(A, b)$
s.t. $A x+b$ reveals $f(x, y)$ and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Certified rOLE $\rightarrow \begin{cases}A x+b, & \text { if }(A, b) \text { satisfies constraints } \\ \perp, & \text { otherwise }\end{cases}$

Certified rOLE

Certified rOLE

$-a_{2}, b_{2} \longrightarrow \operatorname{rOLE}-x_{2} x_{2}+b_{2} \rightarrow$

$$
-a_{3}, b_{3} \longrightarrow \mathrm{rOLE}_{-a_{3} x_{3}+b_{3} \rightarrow}^{x_{3}-}
$$

Certified rOLE

Certified rOLE

- Sender can prove ($a_{1}, b_{1}, a_{2}, b_{2}, \ldots$) satisfies arithmetic constraints

Certified rOLE

- Sender can prove ($a_{1}, b_{1}, a_{2}, b_{2}, \ldots$) satisfies arithmetic constraints
- Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

- Sender can prove $\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right)$ satisfies
- Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

-Sender can prove $\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right)$ satisfies $a_{i}=a_{j}$ for some (i, j)

- Side product: reusable DV-NIZK in rOLE-hybrid model.

Certified rOLE

Certified rOLE

Certified rOLE

Certified rOLE

Certified rOLE

Certified rOLE

Certified rOLE

Certified rOLE

Certified rOLE

Certified rOLE

Certified rOLE

Certified rOLE

- Correctness: Above equation.

Certified rOLE

- Correctness: Above equation.
- UC-secure against Receiver: $x_{i}:=w \hat{x}_{i}+\hat{\hat{x}}_{i}$.

Certified rOLE

- Correctness: Above equation.
- UC-secure against Receiver: $x_{i}:=w \hat{x}_{i}+\hat{\hat{x}}_{i}$.
- "Strong" UC-secure against Sender:

Certified rOLE

- Correctness: Above equation.
- UC-secure against Receiver: $x_{i}:=w \hat{x}_{i}+\hat{\hat{x}}_{i}$.
- "Strong" UC-secure against Sender:

Certified rOLE

- Correctness: Above equation.
- UC-secure against Receiver: $x_{i}:=w \hat{x}_{i}+\hat{\hat{x}}_{i}$.
- "Strong" UC-secure against Sender: Deviate \Longrightarrow random output

Certified rOLE

- Correctness: Above equation.
- UC-secure against Receiver: $x_{i}:=w \hat{x}_{i}+\hat{\hat{x}}_{i}$.
- "Stre" UC-secure against Sender: Deviate \Longrightarrow random output not yet

Our Results

NEW primitive: Oblivious linear function evaluation (OLE)

$$
\text { get } a x+b \in \mathbb{F}
$$

Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

An UC-secure 2-msg reusable OLE protocol in the CRS setting under Paillier assumption

Our Results

NEW primitive: Oblivious linear function evaluation (OLE)

$$
\text { get } a x+b \in \mathbb{F}
$$

Theorem 2
An information-theoretical
UC-secure reusable NISC
protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

rOLE from Paillier

Dual-mode (similar to OT from [PVW'08])

Mode I

$\mathrm{crs} \leftarrow \mathscr{D}_{1}$

Mode II

rOLE from Paillier

Dual-mode (similar to OT from [PVW'08])

Mode I

$\mathrm{crs} \leftarrow \mathscr{D}_{1}$

Mode II

rOLE from Paillier

Dual-mode (similar to OT from [PVW'08])

Mode I

$\mathrm{crs} \leftarrow \mathscr{D}_{1}$

Mode II

rOLE from Paillier

Dual-mode (similar to OT from [PVW'08])

Efficient simulator against unbounded malicious receiver

rOLE from Paillier

Dual-mode (similar to OT from [PVW'08])

Efficient simulator against unbounded malicious receiver

rOLE from Paillier

Dual-mode (similar to OT from [PVW'08])

Efficient simulator against unbounded malicious receiver

rOLE from Paillier

Dual-mode (similar to OT from [PVW'08])

rOLE from Paillier

Dual-mode (similar to OT from [PVW'08])
\mathscr{D}_{1} is indistinguishable from \mathscr{D}_{2}

Efficient simulator against unbounded malicious receiver

crs $\leftarrow \mathscr{D}_{2}$

Efficient simulator against unbounded malicious sender

Paillier Encryption Scheme

KeyGen \longrightarrow public key, trapdoor

Paillier Encryption Scheme

KeyGen \longrightarrow public key, trapdoor

Paillier Encryption Scheme

KeyGen \longrightarrow public key, trapdoor

Paillier Encryption Scheme

KeyGen \longrightarrow public key, trapdoor

$\operatorname{Enc}_{r}(x) \cdot \operatorname{Enc}_{s}(y)=\operatorname{Enc}_{r+s}(x+y)$

rOLE from Paillier

rOLE from Paillier

CRS (Mode I)
$h=\operatorname{Enc}_{0}(1)$
$w=\operatorname{Enc}_{\alpha}(0)$
$W_{0}=\operatorname{Enc}_{\beta}(1)$

rOLE from Paillier

CRS (Mode I)

sample sk
$\longleftarrow W_{1}=w^{s k} W_{0}^{\times}=\operatorname{Enc}_{\chi \beta+\alpha \cdot s k}(x)$

rOLE from Paillier

CRS (Mode I)

sample r

sample sk

$$
\longleftarrow W_{1}=w^{\mathrm{sk}} W_{0}^{x}=\operatorname{Enc}_{x \beta+\alpha \cdot s k}(x)
$$

$$
v=w^{r}=\operatorname{Enc}_{r \alpha}(0)
$$

$$
-\quad V_{0}=h^{a} W_{0}^{-r}=\operatorname{Enc}_{-r \beta}(a-r)
$$

$$
V_{1}=h^{b} W_{1}^{r}=\operatorname{Enc}_{r \times \beta+r \alpha \cdot s k}(b+r x)
$$

rOLE from Paillier

CRS (Mode I)

sample r

sample sk

$$
\longleftarrow W_{1}=w^{\mathrm{sk}} W_{0}^{x}=\operatorname{Enc}_{\times \beta+\alpha \cdot s k}(x)
$$

$$
v=w^{r}=\operatorname{Enc}_{r \alpha}(0)
$$

$$
-\quad V_{0}=h^{a} W_{0}^{-r}=\operatorname{Enc}_{-r \beta}(a-r)
$$

$$
V_{1}=h^{b} W_{1}^{r}=\operatorname{Enc}_{r \times \beta+r \alpha \cdot s k}(b+r x)
$$

$$
v^{\text {sk }} V_{0}^{\times} V_{1}=\operatorname{Enc}_{0}(a x+b)
$$

rOLE from Paillier

CRS (Mode II)

$w=\operatorname{Enc}_{\alpha}(0)$
$W_{0}=\operatorname{Enc}_{\beta}(0)$

sample sk

$$
\longleftarrow W_{1}=w^{\mathrm{sk}} W_{0}^{\times}=\operatorname{Enc}_{\times \beta+\alpha \cdot s k}(x)
$$

$$
v=w^{r}=\operatorname{Enc}_{r \alpha}(0)
$$

$$
-\quad V_{0}=h^{a} W_{0}^{-r}=\operatorname{Enc}_{-r \beta}(a-r)
$$

$$
V_{1}=h^{b} W_{1}^{r}=\operatorname{Enc}_{r \times \beta+r \alpha \cdot s k}(b+r x)
$$

$$
v^{\text {sk }} V_{0}^{\times} V_{1}=\operatorname{Enc}_{0}(a x+b)
$$

rOLE from Paillier

CRS (Mode II)

$w=\operatorname{Enc}_{\alpha}(0)$
$W_{0}=\operatorname{Enc}_{\beta}(0)$

sample sk

$$
\longleftarrow W_{1}=w^{\mathrm{sk}} W_{0}^{\times}=\operatorname{Enc}_{\times \beta+\alpha \cdot s k}(0)
$$

$$
v=w^{r}=\operatorname{Enc}_{r \alpha}(0)
$$

$$
-\quad V_{0}=h^{a} W_{0}^{-r}=\operatorname{Enc}_{-r \beta}(a-r)
$$

$$
V_{1}=h^{b} W_{1}^{r}=\operatorname{Enc}_{r \times \beta+r \alpha \cdot s k}(b+r x)
$$

$$
v^{\text {sk }} V_{0}^{\times} V_{1}=\operatorname{Enc}_{0}(a x+b)
$$

rOLE from Paillier

CRS (Mode II)

$w=\operatorname{Enc}_{\alpha}(0)$
$W_{0}=\operatorname{Enc}_{\beta}(0)$

sample sk

$$
\longleftarrow W_{1}=w^{\mathrm{sk}} W_{0}^{\times}=\operatorname{Enc}_{\times \beta+\alpha \cdot s k}(0)
$$

$$
v=w^{r}=\operatorname{Enc}_{r \alpha}(0)
$$

$$
\begin{aligned}
& V_{0}=h^{a} W_{0}^{-r}=\operatorname{Enc}_{-r \beta}(\quad a) \\
& V_{1}=h^{b} W_{1}^{r}=\operatorname{Enc}_{r \times \beta+r \alpha \cdot s k}(b)
\end{aligned}
$$

$$
v^{\text {sk }} V_{0}^{\times} V_{1}=\operatorname{Enc}_{0}(a x+b)
$$

rOLE from Paillier

sample sk

$$
\longleftarrow W_{1}=w^{\text {sk }} W_{0}^{\times}=\operatorname{Enc}_{x \beta+\alpha \cdot \mathrm{sk}}(0)
$$

$$
\begin{gathered}
v=w^{r}=\operatorname{Enc}_{r \alpha}(0) \\
V_{0}=h^{a} W_{0}^{-r}=\operatorname{Enc}_{-r \beta}(a) \\
V_{1}=h^{b} W_{1}^{r}=\operatorname{Enc}_{r \times \beta+r \alpha \cdot s k}(b) \\
v^{\text {sk }} V_{0}^{\times} V_{1}=\operatorname{Enc}_{0}(a x+b)
\end{gathered}
$$

"Strong" UC-security requires a machenism to detect malicious sender

Our Results

- (! IT rNISC/rOT) There is no information-theoretical reusable NISC protocol in rOT-hybrid model.
- (IT rNISC/rOLE for arithmetic NC ${ }^{1}$) Information-theoretical UC-secure reusable NISC protocol for any arithmetic NC 1 circuit or arithmetic branching program in rOLE-hybrid model.
- (IT rNIZK/rOLE) Information-theoretical UC-secure reusable NIZK protocol in rOLE-hybrid model; $O(1)$ calls per gate.
- Previous two + Garbled circuit \rightarrow (rNISC/rOLE) UC-secure reusable NISC for general circuits; IT secure against sender; poly (λ) calls per gate.
- (rOLE protocol from Paillier) UC-secure reusable 2-message OLE protocol in CRS model; one-side IT secure; c.c. O(1) group elements per call.

Our Results

- rNISC in CRS model assuming the security of Paillier encryption.
- rNIZK in CRS model assuming the security of Paillier encryption. c.c. $O(1)$ group elements per gate.
- Statistical designated-verifier NIZK argument for NP in CRS model assuming Paillier.
> Push cryptograph to offline phase. In offline phase: prepare random $((a, b),(x, a x+b))$; In online phase: consume the prepared randomness.

Our Results

- rNISC in CRS model assuming the security of Paillier encryption.
- rNIZK in CRS model assuming the security of Paillier encryption. c.c. $O(1)$ group elements per gate.
- Statistical designated-verifier NIZK argument for NP in CRS model assuming Paillier.
- Push cryptograph to offline phase. In offline phase: prepare random $((a, b),(x, a x+b))$; In online phase: consume the prepared randomness.

Our Results

- rNISC in CRS model assuming the security of Paillier encryption.
- rNIZK in CRS model assuming the security of Paillier encryption. c.c. $O(1)$ group elements per gate.
- Statistical designated-verifier NIZK argument for NP in CRS model assuming Paillier.
- Push cryptograph to offline phase.

In offline phase: prepare random $((a, b),(x, a x+b))$;
In online phase: consume the prepared randomness.

