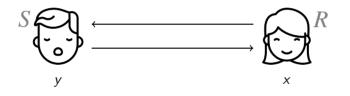
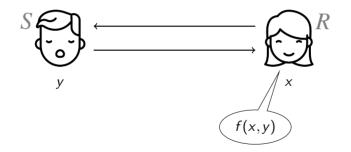
Reusable Non-Interactive Secure Computation

Aug 22, 2019

(日) (문) (문) (문) (문)

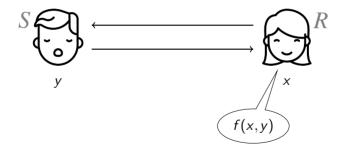

Goal: receiver gets f(x, y) for a public function f.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●


Goal: receiver gets f(x, y) for a public function f.

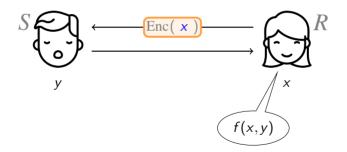
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Goal: receiver gets f(x, y) for a public function f.

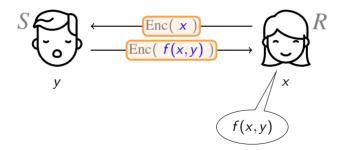

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Goal: receiver gets f(x, y) for a public function f.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●


E.g. FHE \implies Semi-honest NISC

Goal: receiver gets f(x, y) for a public function f.


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

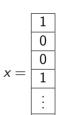
E.g. FHE \implies Semi-honest NISC

Goal: receiver gets f(x, y) for a public function f.

E.g. FHE \implies Semi-honest NISC

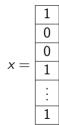
Goal: receiver gets f(x, y) for a public function f.

х

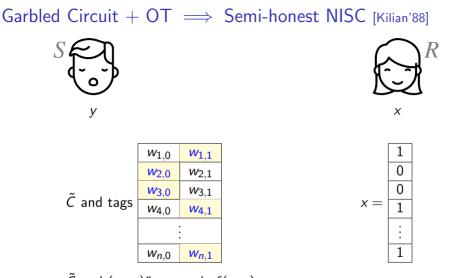

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$ ilde{C}$ and tags	<i>w</i> _{1,0}	<i>w</i> _{1,1}
	W _{2,0}	<i>w</i> _{2,1}
	W _{3,0}	<i>W</i> _{3,1}
	W4,0	<i>w</i> _{4,1}
	:	
	<i>W</i> _{<i>n</i>,0}	W _{n,1}

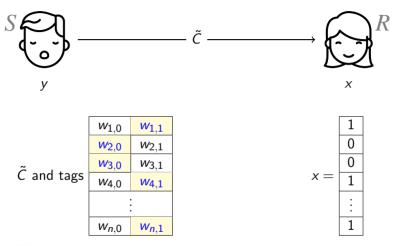
Х


1

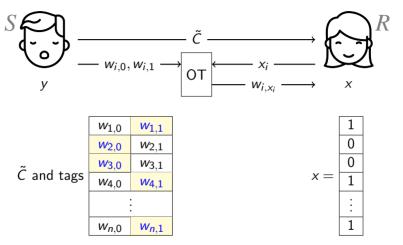
$ ilde{C}$ and tags	<i>w</i> _{1,0}	$w_{1,1}$
	<i>W</i> _{2,0}	W _{2,1}
	W3,0	W3,1
	W4,0	W4,1
	<i>W</i> _{<i>n</i>,0}	W _{n,1}



Х


$ ilde{C}$ and tags	<i>w</i> _{1,0}	<i>w</i> _{1,1}
	<i>w</i> _{2,0}	<i>w</i> _{2,1}
	<i>W</i> 3,0	<i>w</i> _{3,1}
	W4,0	W4,1
	÷	
	<i>W</i> _{n,0}	<i>w</i> _{<i>n</i>,1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00


 \tilde{C} and $(w_{i,x_i})_{i=1}^n$ reveals f(x,y) and nothing else computationally.

Garbled Circuit + OT \implies Semi-honest NISC [Kilian'88]

 \tilde{C} and $(w_{i,x_i})_{i=1}^n$ reveals f(x,y) and nothing else computationally.

Garbled Circuit + OT \implies Semi-honest NISC [Kilian'88]

э

 \tilde{C} and $(w_{i,x_i})_{i=1}^n$ reveals f(x,y) and nothing else computationally.

NISC in OT-hybrid model

Advantages

▶ OT realization from various models/assumptions

Efficiency

Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai'88]

- ▶ Information-theoretical NISC for **NC**⁰ in OT-hybrid.
- ▶ NISC in OT-hybrid using black-box PRG.

Disadvantages

▶ NOT reusable secure.

NISC in OT-hybrid model

Advantages

- OT realization from various models/assumptions
- Efficiency
- Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai'88]

- ▶ Information-theoretical NISC for **NC**⁰ in OT-hybrid.
- ► NISC in OT-hybrid using black-box PRG.

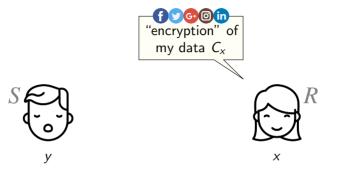
Disadvantages

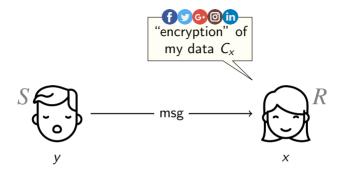
NISC in OT-hybrid model

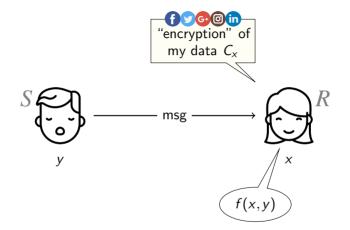
Advantages

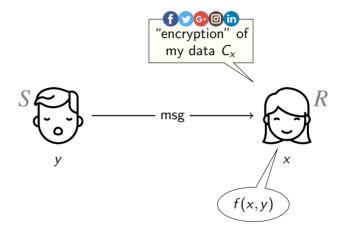
- OT realization from various models/assumptions
- Efficiency
- Malicious Security [Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai'88]

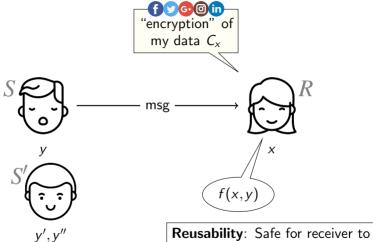
- ▶ Information-theoretical NISC for **NC**⁰ in OT-hybrid.
- ► NISC in OT-hybrid using black-box PRG.

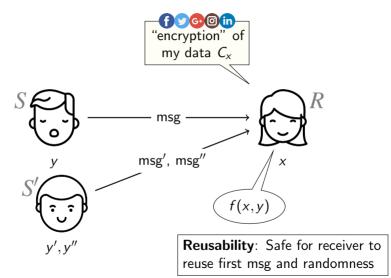

Disadvantages

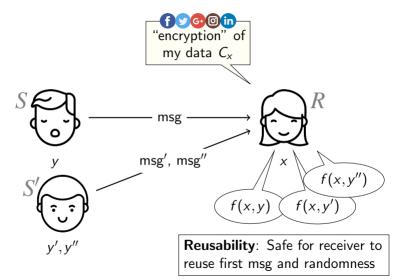

► NOT reusable secure.

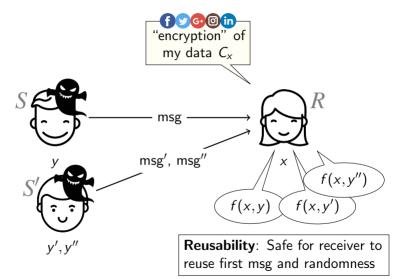


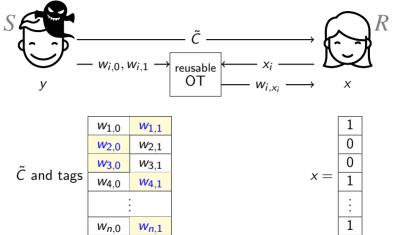


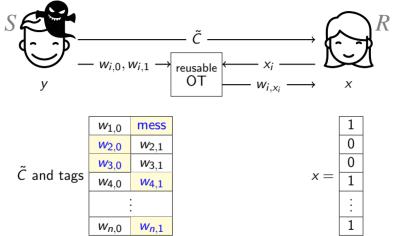

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼


◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

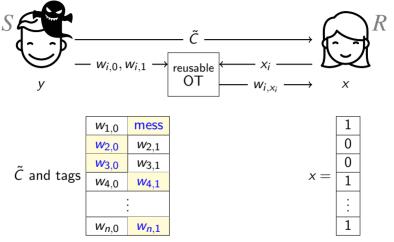



Reusability: Safe for receiver to reuse first msg and randomness

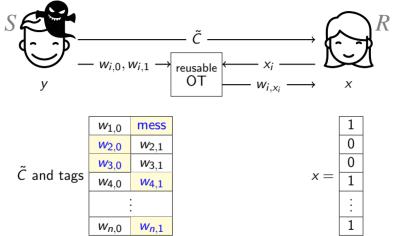

reuse first msg and randomness



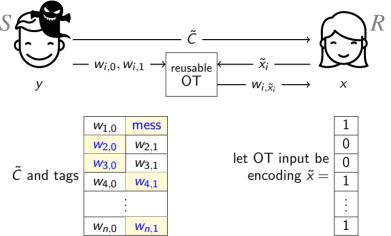
NISC in OT-hybrid model


・ロト・西ト・山田・山田・

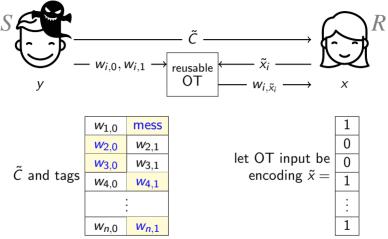
NISC in OT-hybrid model


・ロト・西ト・西ト・日・ うらぐ

NISC in OT-hybrid model

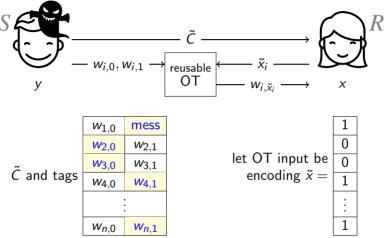

Replacing $w_{1,1}$ changes \bigotimes 's behaviour $\implies x[1] = 1$ thus **NO security** against malicious sender.

NISC in OT-hybrid model


・ロト・西ト・西ト・日・ うらぐ

NISC in OT-hybrid model + one-shot UC-security [IKOPS'11]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼


NISC in OT-hybrid model + one-shot UC-security [IKOPS'11]

A few bits of \tilde{x} leaks no information about x.

э.

NISC in OT-hybrid model + one-shot UC-security [IKOPS'11]

Repeat the attack to learn the whole encoding \tilde{x} thus **NO reusable security** against malicious sender.


э.

Our Results

Impossible to patch the protocol against malicious adversaries in reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

Our Results

Impossible to patch the protocol against malicious adversaries in reusable settings, as we show...

Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

There is no reusable NISC for certain functionalities in rOT-hybrid model with black-box simulation, assuming OWF.

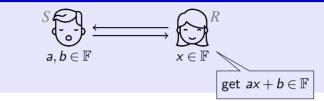
Our Results

Impossible to patch the protocol against malicious adversaries in reusable settings, as we show...

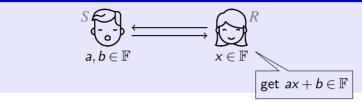
Theorem 1

There is no information-theoretic reusable NISC in rOT-hybrid model.

There is no reusable NISC for certain functionalities in rOT-hybrid model with black-box simulation, assuming OWF.


Expansive alternative: Semi-honest NISC + reusable NIZK \implies reusable NISC.

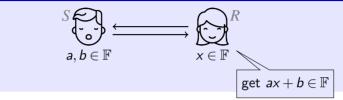
NEW primitive: Oblivious linear function evaluation (OLE)


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

NEW primitive: Oblivious linear function evaluation (OLE)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

NEW primitive: Oblivious linear function evaluation (OLE)

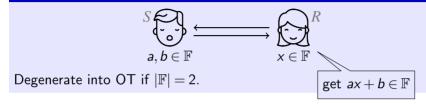


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

NEW primitive: Oblivious linear function evaluation (OLE)

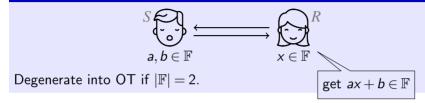

Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

NEW primitive: Oblivious linear function evaluation (OLE)

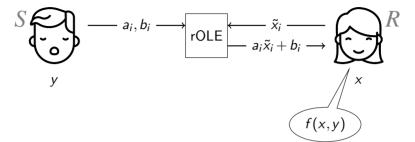

Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

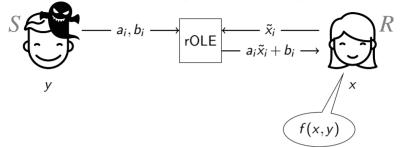
Theorem 3

An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

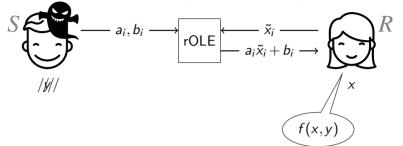
NEW primitive: Oblivious linear function evaluation (OLE)

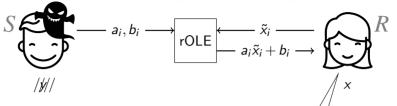

Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

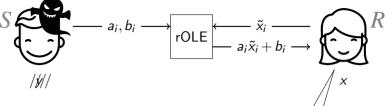

Security loss $\approx \frac{1}{|\mathbb{F}|}$

Theorem 3


An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

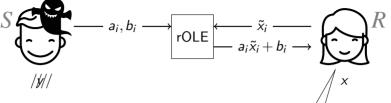

・ロト・西ト・西ト・ 日・ うらぐ

・ロト・日本・山田・山田・山中・


・ロト・日本・山田・山田・山中・

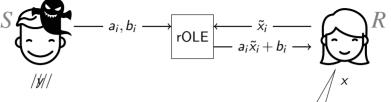
 $f(x, y^*)$

人名英格兰 医马克尔氏 化丁基


▶ **UC-security**: \exists an efficient simulator \mathscr{S} $\mathscr{S}(a_1, b_1, a_2, b_2, ...) \rightarrow y^*$

▶ **UC-security**: \exists an efficient simulator \mathscr{S} $\mathscr{S}(a_1, b_1, a_2, b_2, ...) \rightarrow y^*$

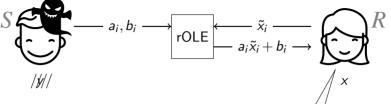
No Abort (optional): When abnormal behavior was detected, output f(x,0)



▶ **UC-security**: \exists an efficient simulator \mathscr{S} $\mathscr{S}(a_1, b_1, a_2, b_2, ...) \rightarrow y^*$

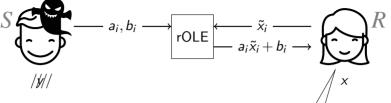
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- No Abort (optional): When abnormal behavior was detected, output f(x,0)
- ▶ Difficulty: distribution y* ⇒ f(x,y*) has entropy in ideal world ⇒ leak information of receiver's randomness in real world


▶ **UC-security**: \exists an efficient simulator \mathscr{S} $\mathscr{S}(a_1, b_1, a_2, b_2, ...) \rightarrow y^*$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

No Abort (optional): When abnormal behavior was detected, output f(x,0)

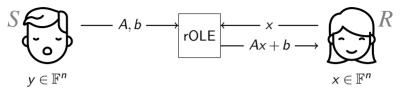

▶ Difficulty: distribution y* ⇒ f(x,y*) has entropy in ideal world ⇒ leak information of receiver's randomness in real world

▶ **UC-security**: \exists an efficient simulator \mathscr{S} $\mathscr{S}(a_1, b_1, a_2, b_2, ...) \rightarrow y^*$

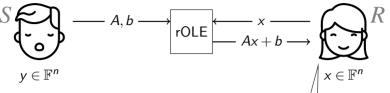
- No Abort (optional): When abnormal behavior was detected, output f(x,0)
- **Difficulty**: distribution $y^* \implies f(x, y^*)$ has entropy in ideal world \implies leak information of receiver's randomness in real world

▶ **UC-security**: \exists an efficient simulator \mathscr{S} $\mathscr{S}(a_1, b_1, a_2, b_2, ...) \rightarrow y^*$

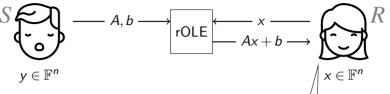
- No Abort (optional): When abnormal behavior was detected, output f(x,0)
- **Difficulty**: distribution $y^* \implies f(x, y^*)$ has entropy in ideal world \implies leak information of receiver's randomness in real world
- "Strong" UC-security The simulator is deterministic



- Assume f is an arithmetic NC¹ circuit or an arithmetic branching program over F
- ▶ [IK'02,AIK'14] encode $y \mapsto (A, b)$ s.t. Ax + b reveals f(x, y) and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints Certified rOLE $\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ & \text{otherwise} \end{cases}$

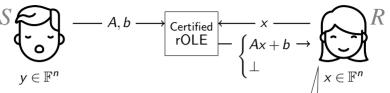

 $S \bigoplus_{y \in \mathbb{F}^n}$

- Assume f is an arithmetic NC¹ circuit or an arithmetic branching program over F
- [IK'02,AIK'14] encode y → (A, b)
 s.t. Ax + b reveals f(x, y) and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints Certified rOLE $\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$


- Assume f is an arithmetic NC¹ circuit or an arithmetic branching program over F
- [IK'02,AIK'14] encode y → (A, b)
 s.t. Ax + b reveals f(x, y) and nothing else
- ▶ Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints Certified rOLE → $\begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$

Assume f is an arithmetic NC¹ circuit or an arithmetic branching program over F

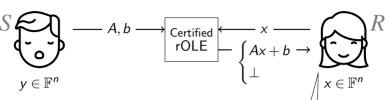
- [IK'02,AIK'14] encode y → (A, b)
 s.t. Ax + b reveals f(x, y) and nothing else
- ▶ Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints Certified rOLE → $\begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$



Assume f is an arithmetic NC¹ circuit or an arithmetic branching program over F

- [IK'02,AIK'14] encode y → (A, b)
 s.t. Ax + b reveals f(x, y) and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

Certified rOLE $\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$


Assume f is an arithmetic NC¹ circuit or an arithmetic branching program over F

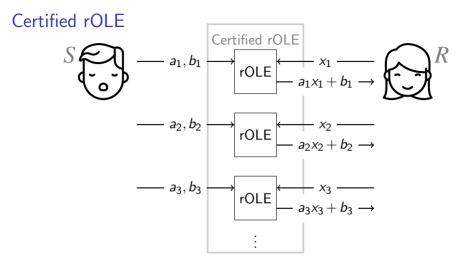
[IK'02,AIK'14] encode y → (A, b)
 s.t. Ax + b reveals f(x, y) and nothing else

Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints

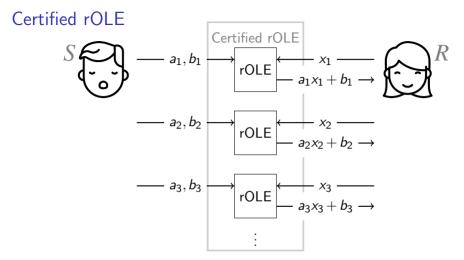
Certified rOLE $\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$

Assume f is an arithmetic NC¹ circuit or an arithmetic branching program over F

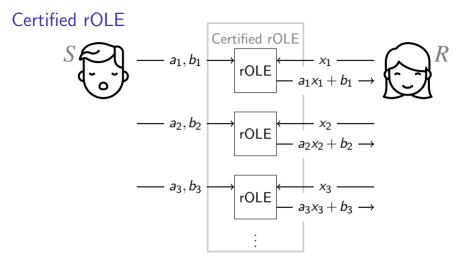
- [IK'02,AIK'14] encode y → (A, b)
 s.t. Ax + b reveals f(x, y) and nothing else
- Against malicious sender: detect if (A, b) is honestly generated, i.e. satisfies some simple arithmetic constraints Certified rOLE $\rightarrow \begin{cases} Ax + b, & \text{if } (A, b) \text{ satisfies constraints} \\ \bot, & \text{otherwise} \end{cases}$



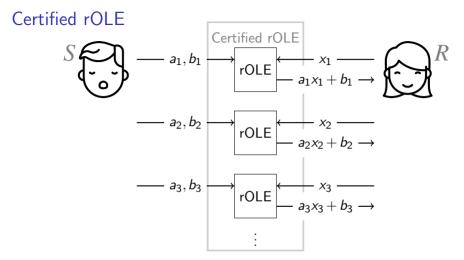
Certified rOLE


R - a₁, b₁ - $\mathsf{rOLE} \xrightarrow{\longleftarrow} x_1 \xrightarrow{} a_1 x_1 + b_1 \xrightarrow{} b_1$ a_2, b_2 $\mathsf{rOLE} \xrightarrow{\longleftarrow} x_2 \xrightarrow{} a_2 x_2 + b_2 \xrightarrow{} b_2 \xrightarrow{} b_2$ a_3, b_3 rOLE $\frac{1}{a_3x_3+b_3} \rightarrow \frac{1}{a_3x_3+b_3}$

:

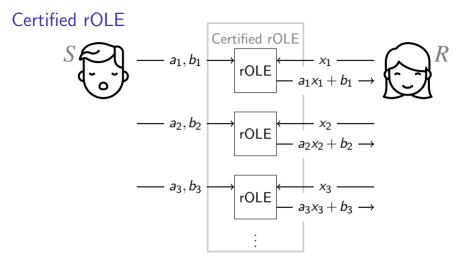

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

・ロト・西ト・モート ヨー うらぐ


Sender can prove $(a_1, b_1, a_2, b_2, ...)$ satisfies arithmetic constraints

Sender can prove $(a_1, b_1, a_2, b_2, ...)$ satisfies arithmetic constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ


Side product: reusable DV-NIZK in rOLE-hybrid model.

Sender can prove $(a_1, b_1, a_2, b_2, ...)$ satisfies arithmetic constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

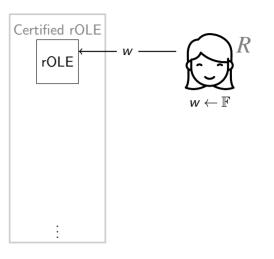
Side product: reusable DV-NIZK in rOLE-hybrid model.

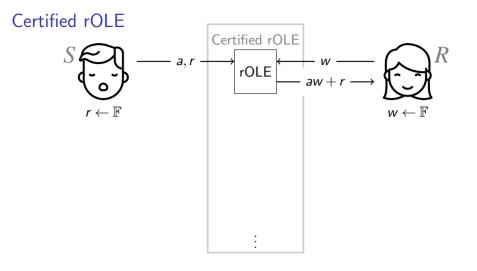
Sender can prove $(a_1, b_1, a_2, b_2, ...)$ satisfies arithmetic constraints $a_i = a_j$ for some (i, j) for general constraints \rightarrow see eprint

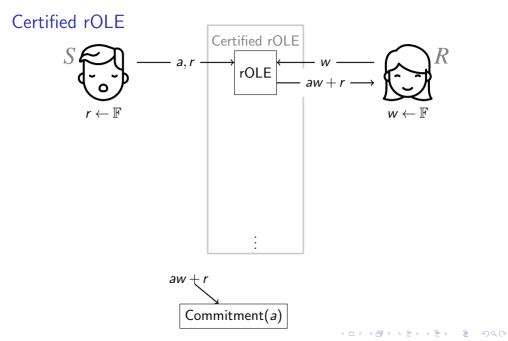
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

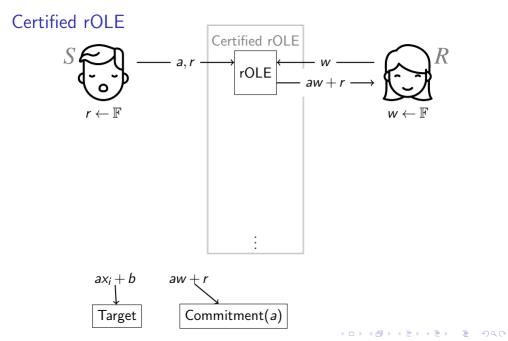
Side product: reusable DV-NIZK in rOLE-hybrid model.

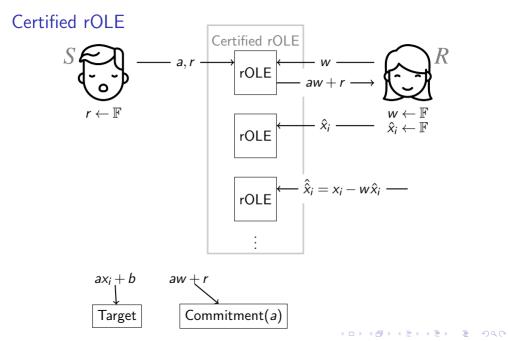
Certified rOLE

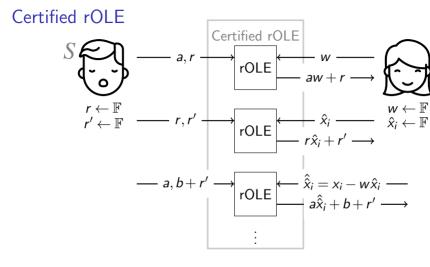

Certified rOLE

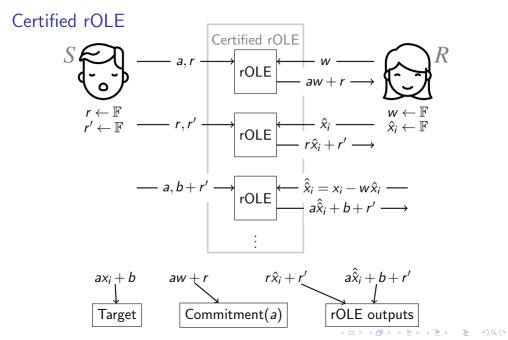

:

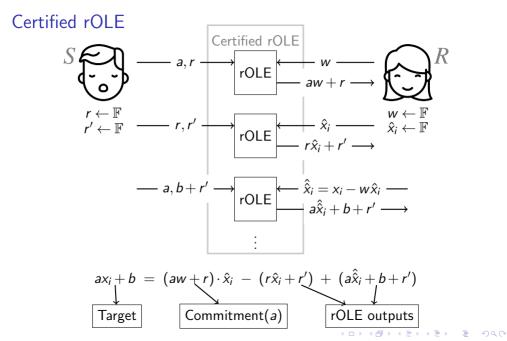


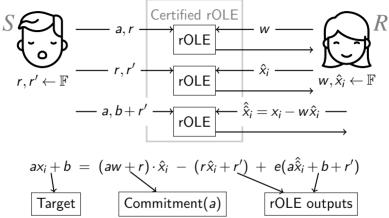

Certified rOLE

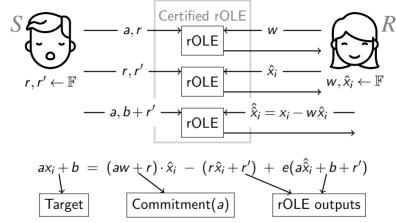




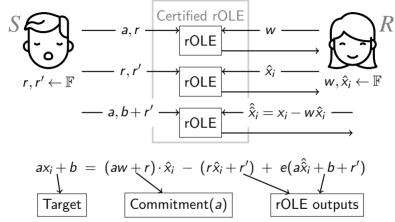


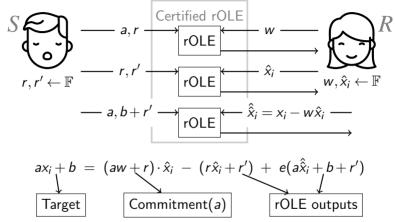




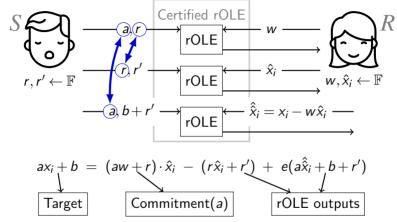

R

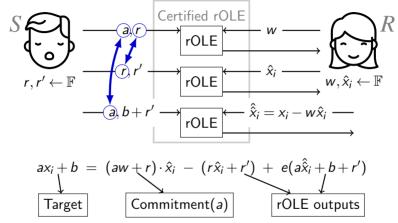
 $\begin{array}{c} ax_i + b \\ \downarrow \\ \hline Target \end{array} \qquad \begin{array}{c} aw + r \\ \hline Commitment(a) \end{array}$



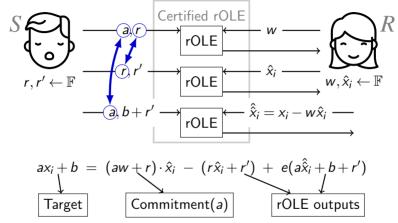


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00


Correctness: Above equation.


- Correctness: Above equation.
- UC-secure against Receiver: $x_i := w \hat{x}_i + \hat{x}_i$.

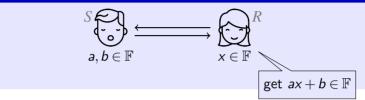
- ► Correctness: Above equation.
- UC-secure against Receiver: $x_i := w \hat{x}_i + \hat{x}_i$.
- "Strong" UC-secure against Sender:



- ► Correctness: Above equation.
- UC-secure against Receiver: $x_i := w \hat{x}_i + \hat{x}_i$.
- "Strong" UC-secure against Sender:

► Correctness: Above equation.

- UC-secure against Receiver: $x_i := w \hat{x}_i + \hat{x}_i$.
- "Strong" UC-secure against Sender: Deviate ⇒ random output



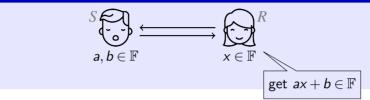
► Correctness: Above equation.

• UC-secure against Receiver: $x_i := w \hat{x}_i + \hat{x}_i$.

 <u>"Strong"</u> UC-secure against Sender: Deviate ⇒ random output not yet

NEW primitive: Oblivious linear function evaluation (OLE)

Theorem 2

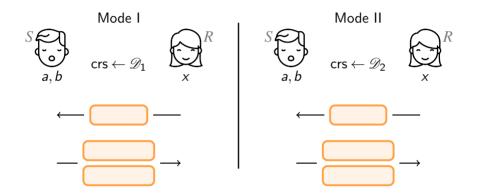

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

Theorem 3

An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

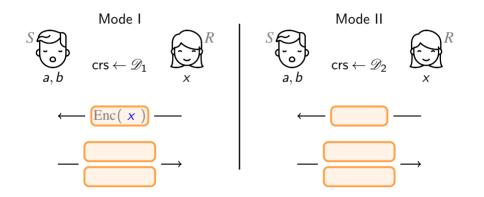
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

NEW primitive: Oblivious linear function evaluation (OLE)


Theorem 2

An information-theoretical UC-secure reusable NISC protocol in rOLE-hybrid model.

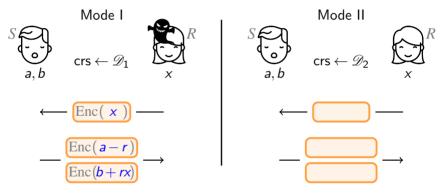
Theorem 3


An UC-secure 2-msg reusable OLE protocol in the CRS setting, under Paillier assumption.

Dual-mode (similar to OT from [PVW'08])

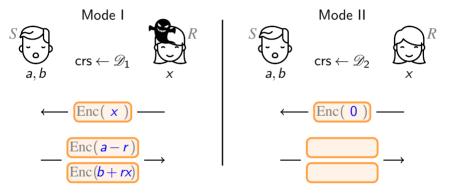
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Dual-mode (similar to OT from [PVW'08])



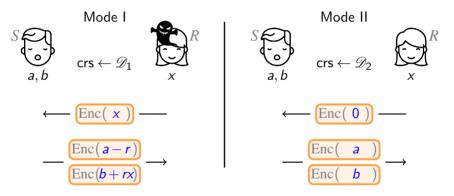
・ロト・西ト・山田・山田・山下・

Dual-mode (similar to OT from [PVW'08])


Dual-mode (similar to OT from [PVW'08])

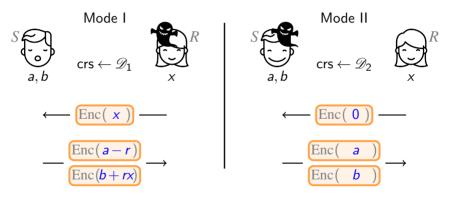
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Efficient simulator against unbounded malicious receiver


Dual-mode (similar to OT from [PVW'08])

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

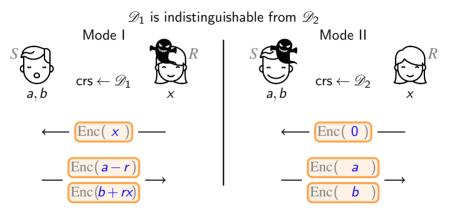
Efficient simulator against unbounded malicious receiver


Dual-mode (similar to OT from [PVW'08])

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Efficient simulator against unbounded malicious receiver

Dual-mode (similar to OT from [PVW'08])

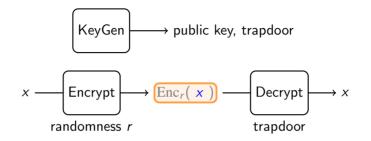


Efficient simulator against unbounded malicious receiver

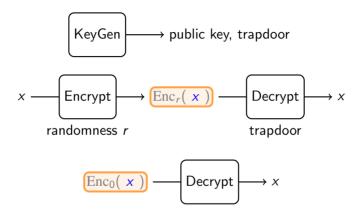
Efficient simulator against unbounded malicious sender

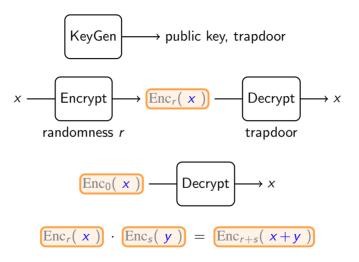
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Dual-mode (similar to OT from [PVW'08])



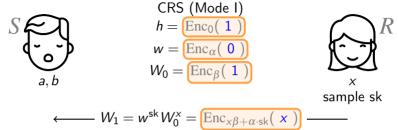
Efficient simulator against unbounded malicious receiver

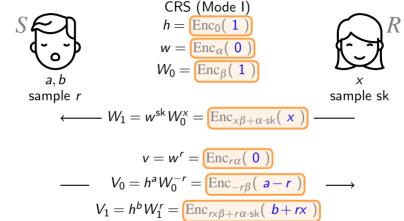

Efficient simulator against unbounded malicious sender



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

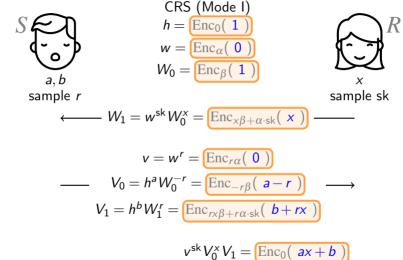
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇



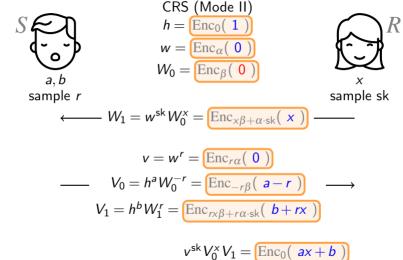

CRS (Mode I)

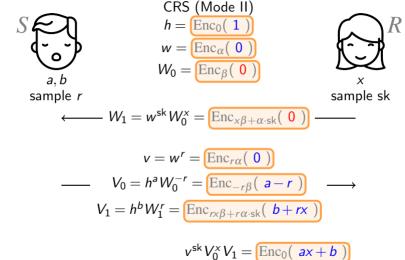
$$h = \operatorname{Enc}_0(1)$$

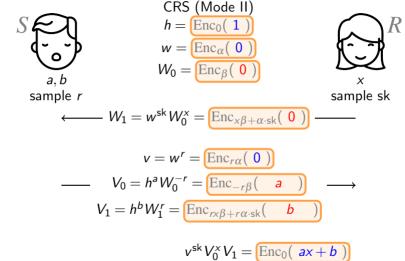
 $w = \operatorname{Enc}_\alpha(0)$
 $W_0 = \operatorname{Enc}_\beta(1)$

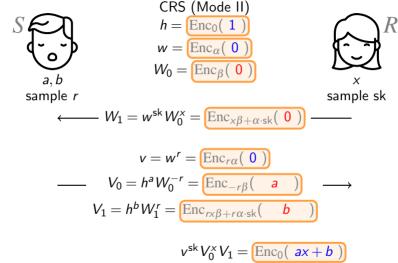


(日本) (日本) (日本) (日本) (日本)






◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)


・ロト・西ト・西ト・ 日・ うらぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

"Strong" UC-security requires a machenism to detect malicious sender

- ► (!∃ IT rNISC/rOT) There is no information-theoretical reusable NISC protocol in rOT-hybrid model.
- (IT rNISC/rOLE for arithmetic NC¹) Information-theoretical UC-secure reusable NISC protocol for any arithmetic NC¹ circuit or arithmetic branching program in rOLE-hybrid model.
- (IT rNIZK/rOLE) Information-theoretical UC-secure reusable NIZK protocol in rOLE-hybrid model; O(1) calls per gate.
- Previous two + Garbled circuit \rightarrow (rNISC/rOLE) UC-secure reusable NISC for general circuits; IT secure against sender; poly(λ) calls per gate.
- (rOLE protocol from Paillier) UC-secure reusable 2-message OLE protocol in CRS model; one-side IT secure; c.c. O(1) group elements per call.

- **rNISC** in CRS model assuming the security of Paillier encryption.
- rNIZK in CRS model assuming the security of Paillier encryption.
 c.c. O(1) group elements per gate.
- Statistical designated-verifier NIZK argument for NP in CRS model assuming Paillier.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Push cryptograph to offline phase.
 In offline phase: prepare random ((a, b), (x, ax + b));
 In online phase: consume the prepared randomness.

- **rNISC** in CRS model assuming the security of Paillier encryption.
- rNIZK in CRS model assuming the security of Paillier encryption.
 c.c. O(1) group elements per gate.
- Statistical designated-verifier NIZK argument for NP in CRS model assuming Paillier.

Push cryptograph to offline phase.
 In offline phase: prepare random ((a, b), (x, ax + b));
 In online phase: consume the prepared randomness.

- **rNISC** in CRS model assuming the security of Paillier encryption.
- rNIZK in CRS model assuming the security of Paillier encryption.
 c.c. O(1) group elements per gate.
- Statistical designated-verifier NIZK argument for NP in CRS model assuming Paillier.

Push cryptograph to offline phase.
 In offline phase: prepare random ((a, b), (x, ax + b));
 In online phase: consume the prepared randomness.