Towards Breaking the Exponential Barrier for General Secret Sharing

Tianren LiuVinod VaikuntanathanHoeteck WeeMITMITCNRS and ENS

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

May 6, 2018

Secret $s \in \{0,1\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○□ ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

NO INFO if I gets < t shares.

NO INFO if threshold $_t(x_1, \dots, x_n) = 1$,

Best Known Secret Sharing Schemes

Share size $\leq O(\text{monotone formula size}) \leq \tilde{O}(2^n)$. [Benaloh-Leichter'88] Share size $\leq O(\text{monotone span program size}) \leq \tilde{O}(2^n)$. [Karchmer-Wigderson'93]

Best Known Secret Sharing Schemes

Share size $\leq O(\text{monotone formula size}) \leq \tilde{O}(2^n)$. [Benaloh-Leichter'88] Share size $\leq O(\text{monotone span program size}) \leq \tilde{O}(2^n)$. [Karchmer-Wigderson'93]

Lower Bounds

 $\exists F$ that share size $\geq \tilde{O}(2^{n/2})$ for *linear* secret sharing. [KW'93] $\exists F$ that total share size $\geq \tilde{\Omega}(n^2)$. [Csirmaz'97]

Best Known Secret Sharing Schemes

Share size $\leq O(\text{monotone formula size}) \leq \tilde{O}(2^n)$. [Benaloh-Leichter'88] Share size $\leq O(\text{monotone span program size}) \leq \tilde{O}(2^n)$. [Karchmer-Wigderson'93]

Lower Bounds

 $\exists F$ that share size $\geq \tilde{O}(2^{n/2})$ for *linear* secret sharing. [KW'93] $\exists F$ that total share size $\geq \tilde{\Omega}(n^2)$. [Csirmaz'97]

Empirical Observation: In general secret sharing, share size grows (polynomially) on representation size.

Best Known Secret Sharing Schemes

Share size $\leq O(\text{monotone formula size}) \leq \tilde{O}(2^n)$. [Benaloh-Leichter'88] Share size $\leq O(\text{monotone span program size}) \leq \tilde{O}(2^n)$. [Karchmer-Wigderson'93]

Lower Bounds

 $\exists F$ that share size $\geq \tilde{O}(2^{n/2})$ for *linear* secret sharing. [KW'93] $\exists F$ that total share size $\geq \tilde{\Omega}(n^2)$. [Csirmaz'97]

Empirical Observation: In general secret sharing, share size grows (polynomially) on representation size.

Representation Size Barrier?

For any collection of $2^{2^{\Omega(n)}}$ monotone access functions, $\exists F$ in the collection that requires $2^{\Omega(n)}$ share size.

Our results

Representation Size Barrier?

For any collection of $2^{2^{\Omega(n)}}$ monotone access functions, $\exists F$ in the collection that requires $2^{\Omega(n)}$ share size.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Our results

Representation Size Barrier?

For any collection of $2^{2^{\Omega(n)}}$ monotone access functions, $\exists F$ in the collection that requires $2^{\Omega(n)}$ share size.

Our Theorem: Overcoming the Representation Size Barrier

There is a collection of $2^{2^{n/2}}$ monotone access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

Our results

Representation Size Barrier?

For any collection of $2^{2^{\Omega(n)}}$ monotone access functions, $\exists F$ in the collection that requires $2^{\Omega(n)}$ share size.

Our Theorem: Overcoming the Representation Size Barrier

There is a collection of $2^{2^{n/2}}$ monotone access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

Main Tool: Multi-party Conditional Disclosure of Secrets (CDS)

Multi-party CDS scheme with communication complexity $2^{\tilde{O}(\sqrt{n})}$.

$$(\underbrace{\bigcirc}_{x_1 \in \{0,1\}} \qquad \underbrace{\bigcirc}_{x_2 \in \{0,1\}} \qquad \underbrace{\bigcirc}_{x_3 \in \{0,1\}} \qquad \underbrace{\bigcirc}_{x_n \in \{0,1\}} \qquad (\underbrace{\bigcirc}_{x_n \in \{0,1\}})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Correctness: When $F(x_1, \ldots, x_n) = 1$, Charlie gets s.

- Correctness: When $F(x_1, \ldots, x_n) = 1$, Charlie gets *s*.
- ▶ IT Privacy: When $F(x_1,...,x_n) = 0$, Charlie learns nothing about *s*.

A E A CO

• □ ▶ < □ ▶ < □ ▶</p>

・ コ ア ・ 雪 ア ・ 雪 ア ・ 日 ア

э.

 Promise: Exactly one participant from each bucket

 Promise: Exactly one participant from each bucket

•
$$A_{x_1}, B_{x_2}, \dots, E_{x_5}$$
 recover *s* if $F(x_1, \dots, x_5) = 1$

・ロト・西ト・山田・山田・

- Promise: Exactly one participant from each bucket
- ► $A_{x_1}, B_{x_2}, \dots, E_{x_5}$ recover s if $F(x_1, \dots, x_5) = 1$

• # access functions =
$$2^{2^{n/2}}$$

- Promise: Exactly one participant from each bucket
- ► $A_{x_1}, B_{x_2}, \dots, E_{x_5}$ recover s if $F(x_1, \dots, x_5) = 1$
- # access functions = $2^{2^{n/2}}$
- A_0 's share $= m_1(0, s, r)$, A_1 's share $= m_1(1, s, r)$, etc

- Correctness: When $F(x_1, \ldots, x_n) = 1$, Charlie gets *s*.
- ▶ IT Privacy: When $F(x_1,...,x_n) = 0$, Charlie learns nothing about *s*.

• Correctness: When $F(x_1, \ldots, x_n) = 1$, Charlie gets *s*.

▶ IT Privacy: When $F(x_1, ..., x_n) = 0$, Charlie learns nothing about *s*.

- Correctness: When $F(x_1, \ldots, x_n) = 1$, Charlie gets *s*.
- ▶ IT Privacy: When $F(x_1,...,x_n) = 0$, Charlie learns nothing about *s*.

• Correctness: When $F(x_1, \ldots, x_n) = 1$, Charlie gets *s*.

▶ IT Privacy: When $F(x_1,...,x_n) = 0$, Charlie learns nothing about *s*.

• Correctness: When $F(x_1, \ldots, x_n) = 1$, Charlie gets *s*.

▶ IT Privacy: When $F(x_1,...,x_n) = 0$, Charlie learns nothing about *s*.

• Correctness: When F(x) = 1, Charlie gets s.

▶ IT Privacy: When F(x) = 0, Charlie learns nothing about s.

2-party CDS: Previous Works

2-Party CDS

Communication Complexity		Reconstruction
$\Theta(2^{n/2})$	[GKW'15]	linear
$\Theta(2^{n/3})$	[LVW'17]	quadratic
$2^{\tilde{O}(\sqrt{n})}$	[LVW'17]	general
$\Omega(n)$	[GKW'15]	general

2-party CDS \implies Multi-party CDS

Multi-party CDS

- $O(2^{n/2})$ linear reconstruction [GKW'15]
- $O(2^{n/3})$ quadratic reconstruction [LVW'17]
- $2^{\tilde{O}(\sqrt{n})}$ general reconstruction [LVW'17]

Multi-party CDS

777

- $O(2^{n/2})$ linear reconstruction [GKW'15]
- $O(2^{n/3})$ quadratic reconstruction [LVW'17]
- $2^{\tilde{O}(\sqrt{n})}$ general reconstruction [LVW'17]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Key Idea: Player Emulation [Hirt-Maurer'00]

Key Idea: Player Emulation [Hirt-Maurer'00]

• What is sent by Bob? $m_B(x, s, r)$

Key Idea: Player Emulation [Hirt-Maurer'00]

- What is sent by Bob? $m_B(x, s, r)$
- How can *n* players jointly compute m_B ... revealing nothing else?

Key Idea: Player Emulation [Hirt-Maurer'00]

- What is sent by Bob? $m_B(x, s, r)$
- How can *n* players jointly compute m_B ... revealing nothing else?
- PSM (Private Simultaneous Messages) [FKN'94] pprox Non-Interactive MPC

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

What is sent by Bob?

• Bob sends $m_B := \mathbf{r} + s \cdot \mathbf{u}_x$

- Bob sends $m_B := \mathbf{r} + s \cdot \mathbf{u}_x$
- $\begin{array}{l} \bullet \quad \mathbf{u}_{x}: \text{ matching vector} \\ \mathbf{u}_{x}, \mathbf{v}_{x} \in \mathbb{Z}_{6}^{\ell} \text{ for each } x \in \{0,1\}^{n} \\ \langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases} \end{array}$

- Bob sends $m_B := \mathbf{r} + s \cdot \mathbf{u}_x$

- Bob sends $m_B := \mathbf{r} + s \cdot \mathbf{u}_x$
- ▶ \mathbf{u}_{x} : matching vector $\mathbf{u}_{x}, \mathbf{v}_{x} \in \mathbb{Z}_{6}^{\ell}$ for each $x \in \{0,1\}^{n}$ $\langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$ ▶ $\ell = 2^{O(\sqrt{n \log n})} \text{ [BBR'94, Gro'00]}$ ▶ Communication $= \ell = 2^{O(\sqrt{n \log n})}$

What is sent by Bob?

- Bob sends $m_B := \mathbf{r} + s \cdot \mathbf{u}_x$

• Communication
$$= \ell = 2^{O(\sqrt{n \log n})}$$

PSM protocol computing m_B ?

What is sent by Bob?

- Bob sends $m_B := \mathbf{r} + s \cdot \mathbf{u}_x$
- ► \mathbf{u}_x : matching vector $\mathbf{u}_x, \mathbf{v}_x \in \mathbb{Z}_6^\ell$ for each $x \in \{0,1\}^n$ $\langle \mathbf{u}_x, \mathbf{v}_y \rangle = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$
- $\ell = 2^{O(\sqrt{n \log n})}$ [BBR'94,Gro'00]
- Communication $= \ell = 2^{O(\sqrt{n \log n})}$

PSM protocol computing m_B ?

 If m_B(x, s, r) computable by small arithmetic formula, PSM communication is small. [IK'02,AIK'04]

What is sent by Bob?

- Bob sends $m_B := \mathbf{r} + s \cdot \mathbf{u}_x$
- $\begin{array}{l} \bullet \quad \mathbf{u}_{x}: \text{ matching vector} \\ \mathbf{u}_{x}, \mathbf{v}_{x} \in \mathbb{Z}_{6}^{\ell} \text{ for each } x \in \{0,1\}^{n} \\ \langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases} \end{array}$
- $\ell = 2^{O(\sqrt{n \log n})}$ [BBR'94,Gro'00]

• Communication
$$= \ell = 2^{O(\sqrt{n \log n})}$$

PSM protocol computing m_B ?

- If m_B(x, s, r) computable by small arithmetic formula, PSM communication is small. [IK'02,AIK'04]
- ▶ Is $x \mapsto \mathbf{u}_x$ simple?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• mapping $x \mapsto \mathbf{u}_x$ computable by small formula

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

New Construction of Matching Vectors

• mapping $x \mapsto \mathbf{u}_x$ computable by small formula

$$\forall x, \mathbf{u}_x = \mathbf{u}_{1,x_1} \circ \ldots \circ \mathbf{u}_{n,x_n}$$

n pairs of vectors $(\mathbf{u}_{1,0}, \mathbf{u}_{1,1}), \ldots, (\mathbf{u}_{n,0}, \mathbf{u}_{n,1})$

New Construction of Matching Vectors

• mapping $x \mapsto \mathbf{u}_x$ computable by small formula

$$\forall x, \mathbf{u}_x = \mathbf{u}_{1,x_1} \circ \ldots \circ \mathbf{u}_{n,x_n}$$

n pairs of vectors $(\mathbf{u}_{1,0}, \mathbf{u}_{1,1}), \ldots, (\mathbf{u}_{n,0}, \mathbf{u}_{n,1})$

i-th bit of m_B = r + s ⋅ u_x computable by size-O(n) arithmetic formula r[i] + s ⋅ u_{1,x1}[i] ⋅ ... ⋅ u_{n,xn}[i]

New Construction of Matching Vectors

• mapping $x \mapsto \mathbf{u}_x$ computable by small formula

$$\forall x, \mathbf{u}_x = \mathbf{u}_{1,x_1} \circ \ldots \circ \mathbf{u}_{n,x_n}$$

n pairs of vectors $(\mathbf{u}_{1,0}, \mathbf{u}_{1,1}), \ldots, (\mathbf{u}_{n,0}, \mathbf{u}_{n,1})$

i-th bit of m_B = r + s ⋅ u_x computable by size-O(n) arithmetic formula r[i] + s ⋅ u_{1,x1}[i] ⋅ ... ⋅ u_{n,xn}[i]

$$\ell = \frac{2O(\sqrt{n\log n})}{2O(\sqrt{n\log n})} 2^{O(\sqrt{n\log n})}$$

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Each
$$x \in \{0,1\}^n$$
 is mapped to $\mathbf{z}_x \in \{0,1\}^{n^2}$
s.t. \mathbf{z}_x has $\frac{n}{\log n}$ 1's

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

► There exists polynomials $\{p_x\}_x$ for each x s.t. degree- $O(\sqrt{n/\log n})$ over \mathbb{Z}_6 $p_y(\mathbf{z}_x) = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

► There exists polynomials $\{p_x\}_x$ for each x s.t. degree- $O(\sqrt{n/\log n})$ over \mathbb{Z}_6 $p_y(\mathbf{z}_x) = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$

• Let \mathbf{v}_x be the coefficients of p_y and \mathbf{u}_x be all degree- $O(\sqrt{n/\log n})$ monomials of \mathbf{z}_x

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

► There exists polynomials $\{p_x\}_x$ for each x s.t. degree- $O(\sqrt{n/\log n})$ over \mathbb{Z}_6 $p_y(\mathbf{z}_x) = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$

Let v_x be the coefficients of p_y and u_x be all degree-O(√n/log n) monomials of z_x

$$\langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = p_{y}(\mathbf{z}_{x})$$

length = # monomials = $(n^{2})^{O(\sqrt{n/\log n})} = 2^{O(\sqrt{n\log n})}$

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

• Each
$$x \in \{0,1\}^n$$
 is mapped to $\mathbf{z}_x \in \{0,1\}^{n^2}$
s.t. \mathbf{z}_x has $\frac{n}{\log n}$ 1's

► There exists polynomials
$$\{p_x\}_x$$
 for each x s.t.
degree- $O(\sqrt{n/\log n})$ over \mathbb{Z}_6
 $p_y(\mathbf{z}_x) = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$

► Let \mathbf{v}_x be the coefficients of p_y simple and \mathbf{u}_x be all degree- $O(\sqrt{n/\log n})$ monomials of \mathbf{z}_x $\mathbf{z}_x \mapsto \mathbf{u}_x$

$$\langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = p_{y}(\mathbf{z}_{x})$$

length = # monomials = $(n^{2})^{O(\sqrt{n/\log n})} = 2^{O(\sqrt{n\log n})}$

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

► Each
$$x \in \{0,1\}^n$$
 is mapped to $\mathbf{z}_x \in \{0,1\}^{n^2}$ simplify
s.t. \mathbf{z}_x has $\frac{n}{\log n}$ 1's $x \mapsto \mathbf{z}_x$

► There exists polynomials
$$\{p_x\}_x$$
 for each x s.t.
degree- $O(\sqrt{n/\log n})$ over \mathbb{Z}_6
 $p_y(\mathbf{z}_x) = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$

► Let \mathbf{v}_x be the coefficients of p_y simple and \mathbf{u}_x be all degree- $O(\sqrt{n/\log n})$ monomials of \mathbf{z}_x $\mathbf{z}_x \mapsto \mathbf{u}_x$

$$\langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = p_{y}(\mathbf{z}_{x})$$

length = # monomials = $(n^{2})^{O(\sqrt{n/\log n})} = 2^{O(\sqrt{n\log n})}$

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

- ► Each $x \in \{0,1\}^n$ is mapped to $\mathbf{z}_x \in \{0,1\}^{2n}$ simplify s.t. \mathbf{z}_x has n 1's $x \mapsto \mathbf{z}_x$
- ► There exists polynomials $\{p_x\}_x$ for each x s.t. degree- $O(\sqrt{n/\log n})$ over \mathbb{Z}_6 $p_y(\mathbf{z}_x) = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$
- ► Let \mathbf{v}_x be the coefficients of p_y simple and \mathbf{u}_x be all degree- $O(\sqrt{n/\log n})$ monomials of \mathbf{z}_x $\mathbf{z}_x \mapsto \mathbf{u}_x$

$$\langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = p_{y}(\mathbf{z}_{x})$$

length = # monomials = $(n^{2})^{O(\sqrt{n/\log n})} = 2^{O(\sqrt{n\log n})}$

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

- ► Each $x \in \{0,1\}^n$ is mapped to $\mathbf{z}_x \in \{0,1\}^{2n}$ simplify s.t. \mathbf{z}_x has n 1's; map $0 \mapsto 01$, $1 \mapsto 10$ $x \mapsto \mathbf{z}_x$
- ► There exists polynomials $\{p_x\}_x$ for each x s.t. degree- $O(\sqrt{n/\log n})$ over \mathbb{Z}_6 $p_y(\mathbf{z}_x) = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$
- ► Let \mathbf{v}_x be the coefficients of p_y simple and \mathbf{u}_x be all degree- $O(\sqrt{n/\log n})$ monomials of \mathbf{z}_x $\mathbf{z}_x \mapsto \mathbf{u}_x$

$$\langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = p_{y}(\mathbf{z}_{x})$$

length = # monomials = $(n^{2})^{O(\sqrt{n/\log n})} = 2^{O(\sqrt{n\log n})}$

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

- ► Each $x \in \{0,1\}^n$ is mapped to $\mathbf{z}_x \in \{0,1\}^{2n}$ simplify s.t. \mathbf{z}_x has n 1's; map $0 \mapsto 01$, $1 \mapsto 10$ $x \mapsto \mathbf{z}_x$
- ► There exists polynomials $\{p_x\}_x$ for each x s.t. degree- $O(\sqrt{n})$ over \mathbb{Z}_6 $p_y(\mathbf{z}_x) = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$
- ► Let \mathbf{v}_x be the coefficients of p_y simple and \mathbf{u}_x be all degree- $O(\sqrt{n})$ monomials of \mathbf{z}_x $\mathbf{z}_x \mapsto \mathbf{u}_x$

$$\langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = p_{y}(\mathbf{z}_{x})$$

length = # monomials = $(n^{2})^{O(\sqrt{n/\log n})} = 2^{O(\sqrt{n\log n})}$

New Construction of Matching Vectors $x \mapsto (\mathbf{u}_x, \mathbf{v}_x)$

- ► Each $x \in \{0,1\}^n$ is mapped to $\mathbf{z}_x \in \{0,1\}^{2n}$ simplify s.t. \mathbf{z}_x has n 1's; map $0 \mapsto 01$, $1 \mapsto 10$ $x \mapsto \mathbf{z}_x$
- ► There exists polynomials $\{p_x\}_x$ for each x s.t. degree- $O(\sqrt{n})$ over \mathbb{Z}_6 $p_y(\mathbf{z}_x) = \begin{cases} 0, & \text{if } x = y \\ \neq 0, & \text{o.w.} \end{cases}$
- ► Let \mathbf{v}_x be the coefficients of p_y simple and \mathbf{u}_x be all degree- $O(\sqrt{n})$ monomials of \mathbf{z}_x $\mathbf{z}_x \mapsto \mathbf{u}_x$

$$\langle \mathbf{u}_{x}, \mathbf{v}_{y} \rangle = p_{y}(\mathbf{z}_{x})$$

length = # monomials = $(2n)^{O(\sqrt{n})} = 2^{O(\sqrt{n}\log n)}$

• Simpler matching vector $x \mapsto \mathbf{u}_x$

- Simpler matching vector $x \mapsto \mathbf{u}_x$
- (2-party CDS) Bob's message is a small formula

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Simpler matching vector $x \mapsto \mathbf{u}_x$
- (2-party CDS) Bob's message is a small formula
- (multi-party CDS) n parties can be efficiently emulate Bob

Our Results

- Simpler matching vector $x \mapsto \mathbf{u}_x$
- (2-party CDS) Bob's message is a small formula
- (multi-party CDS) n parties can be efficiently emulate Bob

Multi-party CDS

There is a multi-party CDS scheme with communication complexity $2^{O(\sqrt{n}\log n)}$ as long as the total input length is *n* bits.

Our Results

- Simpler matching vector $x \mapsto \mathbf{u}_x$
- (2-party CDS) Bob's message is a small formula
- (multi-party CDS) n parties can be efficiently emulate Bob

Multi-party CDS

There is a multi-party CDS scheme with communication complexity $2^{O(\sqrt{n}\log n)}$ as long as the total input length is *n* bits.

Secret sharing for double-exponentially many access functions

There is a collection of $2^{2^{n/2}}$ access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2^{O(\sqrt{n}\log n)}$.

Our Results

2-party CDS

Multi-party CDS

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 $O(2^{n/2})$ [GKW'15]

linear reconstruction

 $O(2^{n/3})$ [LVW'17]

quadratic reconstruction

 $2^{O(\sqrt{n\log n})}$ [LVW'17] $\longrightarrow 2^{O(\sqrt{n\log n})}$ [This] general reconstruction general reconstruction

Our Results

Secret sharing for even more access functions [This,BKN'18] There is a collection of $2^{\binom{n}{n/2}}$ access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

Secret sharing for even more access functions [This,BKN'18,LV'18] There is a collection of $2^{\binom{n}{n/2}+2^{\Omega(n)}}$ access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

monotone function
$$\leq 2^{\binom{n}{n/2} \cdot (1 + \frac{O(\log n)}{n})}$$

Secret sharing for even more access functions [This,BKN'18,LV'18]
There is a collection of $2^{\binom{n}{n/2} + 2^{\Omega(n)}}$ access functions, s.t.
 $\forall F$ in the family has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

monotone function
$$\leq 2^{\binom{n}{n/2} \cdot (1 + \frac{O(\log n)}{n})}$$

Secret sharing for even more access functions [This,BKN'18,LV'18] There is a collection of $2^{\binom{n}{n/2}+2^{\Omega(n)}}$ access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

Secret sharing for all access functions [LV'18 @STOC]

 $\forall F$ has a secret sharing scheme with share size $2^{0.994n}$.

$Can \ communication \ll Computation)$

$Can \ communication \ll Computation)$

Computational

► FHE

(or representation)Can communication \ll computation size?

Computational

FHE

Information theoretic

Private Information Retrieval

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

(or representation)Can communication \ll computation size?

Computational

FHE

Information theoretic

- Private Information Retrieval
- Conditional Disclosure of Secrets 2-party & multiparty case

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

(or representation)Can communication \ll computation size?

Computational

FHE

Information theoretic

- Private Information Retrieval
- Conditional Disclosure of Secrets 2-party & multiparty case

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 Secret Sharing for 2^{2Ω(n)} access functions potentially for all access functions

(or representation)Can communication \ll computation size?

Computational

FHE

Information theoretic

- Private Information Retrieval
- Conditional Disclosure of Secrets 2-party & multiparty case

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Secret Sharing for 2^{2Ω(n)} access functions potentially for all access functions
- What's next?