Towards Breaking the Exponential Barrier for General Secret Sharing

May 6, 2018

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki' 87$]$

Secret $s \in\{0,1\}$

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki' 87$]$

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki' 87$]$

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki'87]

Threshold Secret Sharing [Shamir'79]
YES if I gets $\geq t$ shares;
NO INFO if I gets $<t$ shares.

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki' 87$]$

Threshold Secret Sharing [Shamir'79]
YES if I gets $\geq t$ shares;
NO INFO if I gets $<t$ shares.

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki'87]

Threshold Secret Sharing [Shamir'79]
YES if I gets $\geq t$ shares;
NO INFO if I gets $<t$ shares.

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki'87]

Threshold Secret Sharing [Shamir'79]
YES if threshold ${ }_{t}\left(x_{1}, \ldots, x_{n}\right)=1$;
NO INFO if threshold ${ }_{t}\left(x_{1}, \ldots, x_{n}\right)=0$.

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki'87]

General Secret Sharing [ISN'89] monotone $F:\{0,1\}^{n} \rightarrow\{0,1\}$
YES if $F\left(x_{1}, \ldots, x_{n}\right)=1$;
NO INFO if $F\left(x_{1}, \ldots, x_{n}\right)=0$.

Key Complexity Measure: Total Share Size

Best Known Secret Sharing Schemes

Share size $\leq O$ (monotone formula size $) \leq \tilde{O}\left(2^{n}\right)$. [Benaloh-Leichter'88] Share size $\leq O$ (monotone span program size) $\leq \tilde{O}\left(2^{n}\right)$. [Karchmer-Wigderson'93]

Key Complexity Measure: Total Share Size

Best Known Secret Sharing Schemes

Share size $\leq O$ (monotone formula size $) \leq \tilde{O}\left(2^{n}\right)$. [Benaloh-Leichter'88] Share size $\leq O$ (monotone span program size) $\leq \tilde{O}\left(2^{n}\right)$. [Karchmer-Wigderson' 33]

Lower Bounds

$\exists F$ that share size $\geq \tilde{O}\left(2^{n / 2}\right)$ for linear secret sharing. [KW'93] $\exists F$ that total share size $\geq \tilde{\Omega}\left(n^{2}\right)$. [Csirmaz'97]

Key Complexity Measure: Total Share Size

Best Known Secret Sharing Schemes

Share size $\leq O($ monotone formula size $) \leq \tilde{O}\left(2^{n}\right)$. [Benaloh-Leichter'88] Share size $\leq O$ (monotone span program size $) \leq \tilde{O}\left(2^{n}\right)$. [Karchmer-Wigderson' 33]

Lower Bounds

$\exists F$ that share size $\geq \tilde{O}\left(2^{n / 2}\right)$ for linear secret sharing. [KW'93]
$\exists F$ that total share size $\geq \tilde{\Omega}\left(n^{2}\right)$. [Csirmaz'97]
Empirical Observation: In general secret sharing, share size grows (polynomially) on representation size.

Key Complexity Measure: Total Share Size

Best Known Secret Sharing Schemes

Share size $\leq O($ monotone formula size $) \leq \tilde{O}\left(2^{n}\right)$. [Benaloh-Leichter'88] Share size $\leq O$ (monotone span program size) $\leq \tilde{O}\left(2^{n}\right)$. [Karchmer-Wigderson'93]

Lower Bounds

$\exists F$ that share size $\geq \tilde{O}\left(2^{n / 2}\right)$ for linear secret sharing. [KW'93]
$\exists F$ that total share size $\geq \tilde{\Omega}\left(n^{2}\right)$. [Csirmaz'97]
Empirical Observation: In general secret sharing, share size grows (polynomially) on representation size.

Representation Size Barrier?

For any collection of $2^{2^{\Omega(n)}}$ monotone access functions, $\exists F$ in the collection that requires $2^{\Omega(n)}$ share size.

Our results

Representation Size Barrier?

For any collection of $2^{2^{\Omega(n)}}$ monotone access functions, $\exists F$ in the collection that requires $2^{\Omega(n)}$ share size.

Our results

Representation Size Barrier?

For any collection of $2^{2^{\Omega(n)}}$ monotone access functions, $\exists F$ in the collection that requires $2^{\Omega(n)}$ share size.

Our Theorem: Overcoming the Representation Size Barrier

There is a collection of $2^{2^{n / 2}}$ monotone access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

Our results

Representation Size Barrier?

For any collection of $2^{2^{\Omega(n)}}$ monotone access functions, $\exists F$ in the collection that requires $2^{\Omega(n)}$ share size.

Our Theorem: Overcoming the Representation Size Barrier

There is a collection of $2^{2^{n / 2}}$ monotone access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

Main Tool: Multi-party Conditional Disclosure of Secrets (CDS)

Multi-party CDS scheme with communication complexity $2 \tilde{O}(\sqrt{n})$.

Multi-party Conditional Disclosure of Secrets

[Gertner-Ishai-Kushilevitz-Malkin'00]

$x_{1}, \ldots, x_{n} \in\{0,1\}$

Multi-party Conditional Disclosure of Secrets

[Gertner-Ishai-Kushilevitz-Malkin'00]

$x_{1}, \ldots, x_{n} \in\{0,1\}$

Multi-party Conditional Disclosure of Secrets

[Gertner-Ishai-Kushilevitz-Malkin'00]

$x_{1}, \ldots, x_{n} \in\{0,1\}$
gets s if and only if $F\left(x_{1}, \ldots, x_{n}\right)=1$

Multi-party Conditional Disclosure of Secrets

[Gertner-Ishai-Kushilevitz-Malkin'00]

gets s if and only if $F\left(x_{1}, \ldots, x_{n}\right)=1$

Multi-party Conditional Disclosure of Secrets

[Gertner-Ishai-Kushilevitz-Malkin'00]

- Correctness: When $F\left(x_{1}, \ldots, x_{n}\right)=1$, Charlie gets s.

Multi-party Conditional Disclosure of Secrets

[Gertner-Ishai-Kushilevitz-Malkin'00]

- Correctness: When $F\left(x_{1}, \ldots, x_{n}\right)=1$, Charlie gets s.
- IT Privacy: When $F\left(x_{1}, \ldots, x_{n}\right)=0$, Charlie learns nothing about s.

Multi-party Conditional Disclosure of Secrets [GІкм'оо]

Multi-party CDS

gets s iff $F\left(x_{1}, \ldots, x_{n}\right)=1$
for some public F

Multi-party Conditional Disclosure of Secrets [GІкм'оo]

Multi-party CDS

gets s iff $F\left(x_{1}, \ldots, x_{n}\right)=1$ for some public F
"Promise" secret sharing

Multi-party Conditional Disclosure of Secrets [GІкм'оo]

Multi-party CDS

gets s iff $F\left(x_{1}, \ldots, x_{n}\right)=1$
for some public F
"Promise" secret sharing

- Promise: Exactly one participant from each bucket

Multi-party Conditional Disclosure of Secrets [GІкм'оо]

Multi-party CDS

gets s iff $F\left(x_{1}, \ldots, x_{n}\right)=1$ for some public F
"Promise" secret sharing

n/2 buckets

- Promise: Exactly one participant from each bucket
- $A_{x_{1}}, B_{x_{2}}, \ldots, E_{x_{5}}$ recover s if $F\left(x_{1}, \ldots, x_{5}\right)=1$

Multi-party Conditional Disclosure of Secrets [GІкм'оo]

Multi-party CDS

gets s iff $F\left(x_{1}, \ldots, x_{n}\right)=1$ for some public F
"Promise" secret sharing

$n / 2$ buckets

- Promise: Exactly one participant from each bucket
- $A_{x_{1}}, B_{x_{2}}, \ldots, E_{x_{5}}$ recover s if $F\left(x_{1}, \ldots, x_{5}\right)=1$
- \# access functions $=2^{2^{n / 2}}$

Multi-party Conditional Disclosure of Secrets [GIкм'oo]

Multi-party CDS

gets s iff $F\left(x_{1}, \ldots, x_{n}\right)=1$ for some public F
"Promise" secret sharing

$n / 2$ buckets

- Promise: Exactly one participant from each bucket
- $A_{x_{1}}, B_{x_{2}}, \ldots, E_{x_{5}}$ recover s if $F\left(x_{1}, \ldots, x_{5}\right)=1$
- \# access functions $=2^{2^{n / 2}}$
- A_{0} 's share $=m_{1}(0, s, r)$,
A_{1} 's share $=m_{1}(1, s, r)$, etc

Multi-party Conditional Disclosure of Secrets [GIкм'oo]

- Correctness: When $F\left(x_{1}, \ldots, x_{n}\right)=1$, Charlie gets s.
- IT Privacy: When $F\left(x_{1}, \ldots, x_{n}\right)=0$, Charlie learns nothing about s.

Multi-party Conditional Disclosure of Secrets [GIкм'оo]

- Correctness: When $F\left(x_{1}, \ldots, x_{n}\right)=1$, Charlie gets s.
- IT Privacy: When $F\left(x_{1}, \ldots, x_{n}\right)=0$, Charlie learns nothing about s.

Multi-party Conditional Disclosure of Secrets [GIкм'оo]

- Correctness: When $F\left(x_{1}, \ldots, x_{n}\right)=1$, Charlie gets s.
- IT Privacy: When $F\left(x_{1}, \ldots, x_{n}\right)=0$, Charlie learns nothing about s.

Multi-party Conditional Disclosure of Secrets [GIкм'oo]

- Correctness: When $F\left(x_{1}, \ldots, x_{n}\right)=1$, Charlie gets s.
- IT Privacy: When $F\left(x_{1}, \ldots, x_{n}\right)=0$, Charlie learns nothing about s.

Multi-party Conditional Disclosure of Secrets [GIкм'оo]

- Correctness: When $F\left(x_{1}, \ldots, x_{n}\right)=1$, Charlie gets s.
- IT Privacy: When $F\left(x_{1}, \ldots, x_{n}\right)=0$, Charlie learns nothing about s.

2-party Conditional Disclosure of Secrets [GIKм'oo]

- Correctness: When $F(x)=1$, Charlie gets s.
- IT Privacy: When $F(x)=0$, Charlie learns nothing about s.

2-party CDS: Previous Works

2-Party CDS

Communication Complexity	Reconstruction	
$\Theta\left(2^{n / 2}\right)$	$[$ GKW'15]	linear
$\Theta\left(2^{n / 3}\right)$	$[$ LVW'17]	quadratic
$2^{\tilde{O}(\sqrt{n})}$	$[$ LVW'17]	general
$\Omega(n)$	$\left[G K W^{\prime} 15\right]$	general

2-party CDS \Longrightarrow Multi-party CDS

- $O\left(2^{n / 2}\right)$ linear reconstruction [GKW'15] $\longrightarrow O\left(2^{n / 2}\right)$ linear reconstruction
- $O\left(2^{n / 3}\right)$ quadratic reconstruction [LVW'17] $\longrightarrow O\left(2^{n / 3}\right)$ quadratic reconstruction
- $2^{\tilde{O}(\sqrt{n})}$ general reconstruction [LVW'17] $\longrightarrow 2^{\tilde{O}(\sqrt{n})}$ general reconstruction

2-party CDS \Longrightarrow Multi-party CDS

2-party CDS

F, x

Multi-party CDS

$-O\left(2^{n / 2}\right)$ linear reconstruction [GKW'15] $\longrightarrow O\left(2^{n / 2}\right)$ linear reconstruction
$-O\left(2^{n / 3}\right)$ quadratic reconstruction [LVW'17] $\longrightarrow O\left(2^{n / 3}\right)$ quadratic reconstruction
$-2^{\tilde{O}(\sqrt{n})}$ general reconstruction [LVW'17] $\longrightarrow 2^{\tilde{O}(\sqrt{n})}$ general reconstruction

2-party CDS \Longrightarrow Multi-party CDS

2-party CDS \Longrightarrow Multi-party CDS

2-party CDS

Multi-party CDS

Key Idea: Player Emulation [Hirt-Maurer'00]

- What is sent by Bob? $m_{B}(x, s, r)$

2-party CDS \Longrightarrow Multi-party CDS

2-party CDS

Multi-party CDS

Key Idea: Player Emulation [Hirt-Maurer'00]

- What is sent by Bob? $m_{B}(x, s, r)$
- How can n players jointly compute $m_{B} \ldots$ revealing nothing else?

2-party CDS \Longrightarrow Multi-party CDS

2-party CDS

F, x

Multi-party CDS

Key Idea: Player Emulation [Hirt-Maurer'00]

- What is sent by Bob? $m_{B}(x, s, r)$
- How can n players jointly compute $m_{B} \ldots$ revealing nothing else?
- PSM (Private Simultaneous Messages) [FKN'94] \approx Non-Interactive MPC

2-party CDS \Longrightarrow Multi-party CDS

2-party CDS \Longrightarrow Multi-party CDS

What is sent by Bob?

2-party CDS \Longrightarrow Multi-party CDS

What is sent by Bob?

- Bob sends $m_{B}:=\mathbf{r}+s \cdot \mathbf{u}_{x}$

2-party CDS \Longrightarrow Multi-party CDS

What is sent by Bob?

- Bob sends $m_{B}:=\mathbf{r}+s \cdot \mathbf{u}_{x}$
- \mathbf{u}_{x} : matching vector
$\mathbf{u}_{x}, \mathbf{v}_{x} \in \mathbb{Z}_{6}^{\ell}$ for each $x \in\{0,1\}^{n}$
$\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$

2-party CDS \Longrightarrow Multi-party CDS

What is sent by Bob?

- Bob sends $m_{B}:=\mathbf{r}+s \cdot \mathbf{u}_{x}$
- \mathbf{u}_{x} : matching vector
$\mathbf{u}_{x}, \mathbf{v}_{x} \in \mathbb{Z}_{6}^{\ell}$ for each $x \in\{0,1\}^{n}$
$\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- $\ell=2^{O(\sqrt{n \log n})}$ [BBR'94,Gro'00]

2-party CDS \Longrightarrow Multi-party CDS

What is sent by Bob?

- Bob sends $m_{B}:=\mathbf{r}+s \cdot \mathbf{u}_{x}$
- \mathbf{u}_{x} : matching vector
$\mathbf{u}_{x}, \mathbf{v}_{x} \in \mathbb{Z}_{6}^{\ell}$ for each $x \in\{0,1\}^{n}$

$$
\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}
$$

- $\ell=2^{O(\sqrt{n \log n})}$ [BBR'94,Gro'00]
- Communication $=\ell=2^{O(\sqrt{n \log n})}$

2-party CDS \Longrightarrow Multi-party CDS

What is sent by Bob?

- Bob sends $m_{B}:=\mathbf{r}+s \cdot \mathbf{u}_{x}$
- \mathbf{u}_{x} : matching vector
$\mathbf{u}_{x}, \mathbf{v}_{x} \in \mathbb{Z}_{6}^{\ell}$ for each $x \in\{0,1\}^{n}$

$$
\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}
$$

- $\ell=2^{O(\sqrt{n \log n})}$ [BBR'94,Gro'00]
- Communication $=\ell=2^{O(\sqrt{n \log n})}$

PSM protocol computing m_{B} ?

2-party CDS \Longrightarrow Multi-party CDS

What is sent by Bob?

- Bob sends $m_{B}:=\mathbf{r}+s \cdot \mathbf{u}_{x}$
- \mathbf{u}_{x} : matching vector
$\mathbf{u}_{x}, \mathbf{v}_{x} \in \mathbb{Z}_{6}^{\ell}$ for each $x \in\{0,1\}^{n}$
$\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- $\ell=2^{O(\sqrt{n \log n})}$ [BBR'94,Gro'00]
- Communication $=\ell=2^{O(\sqrt{n \log n})}$

PSM protocol computing m_{B} ?

- If $m_{B}(x, s, r)$ computable by small arithmetic formula, PSM communication is small. [IK'02,AIK'04]

2-party CDS \Longrightarrow Multi-party CDS

What is sent by Bob?

- Bob sends $m_{B}:=\mathbf{r}+s \cdot \mathbf{u}_{x}$
- \mathbf{u}_{x} : matching vector
$\mathbf{u}_{x}, \mathbf{v}_{x} \in \mathbb{Z}_{6}^{\ell}$ for each $x \in\{0,1\}^{n}$
$\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- $\ell=2^{O(\sqrt{n \log n})}$ [BBR'94,Gro'00]
- Communication $=\ell=2^{O(\sqrt{n \log n})}$

PSM protocol computing m_{B} ?

- If $m_{B}(x, s, r)$ computable by small arithmetic formula,
PSM communication is small.
[IK'02,AIK'04]
- Is $x \mapsto \mathbf{u}_{x}$ simple?

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors

- mapping $x \mapsto \mathbf{u}_{x}$ computable by small formula

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors

- mapping $x \mapsto \mathbf{u}_{x}$ computable by small formula
- $\forall x, \mathbf{u}_{x}=\mathbf{u}_{1, x_{1}} \circ \ldots \circ \mathbf{u}_{n, x_{n}}$ n pairs of vectors $\left(\mathbf{u}_{1,0}, \mathbf{u}_{1,1}\right), \ldots,\left(\mathbf{u}_{n, 0}, \mathbf{u}_{n, 1}\right)$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors

- mapping $x \mapsto \mathbf{u}_{x}$ computable by small formula
- $\forall x, \mathbf{u}_{x}=\mathbf{u}_{1, x_{1}} \circ \ldots \circ \mathbf{u}_{n, x_{n}}$ n pairs of vectors $\left(\mathbf{u}_{1,0}, \mathbf{u}_{1,1}\right), \ldots,\left(\mathbf{u}_{n, 0}, \mathbf{u}_{n, 1}\right)$
- i-th bit of $m_{B}=\mathbf{r}+s \cdot \mathbf{u}_{x}$ computable by size- $O(n)$ arithmetic formula $\mathbf{r}[i]+s \cdot \mathbf{u}_{1, \chi_{1}}[i] \cdot \ldots \cdot \mathbf{u}_{n, x_{n}}[i]$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors

- mapping $x \mapsto \mathbf{u}_{x}$ computable by small formula
- $\forall x, \mathbf{u}_{x}=\mathbf{u}_{1, x_{1}} \circ \ldots \circ \mathbf{u}_{n, x_{n}}$ n pairs of vectors $\left(\mathbf{u}_{1,0}, \mathbf{u}_{1,1}\right), \ldots,\left(\mathbf{u}_{n, 0}, \mathbf{u}_{n, 1}\right)$
- i-th bit of $m_{B}=\mathbf{r}+s \cdot \mathbf{u}_{x}$ computable by size- $O(n)$ arithmetic formula $\boldsymbol{r}[i]+s \cdot \mathbf{u}_{1, \chi_{1}}[i] \cdot \ldots \cdot \mathbf{u}_{n, \chi_{n}}[i]$
- $\ell=2^{O(\sqrt{n \log n})} 2^{O(\sqrt{n} \log n)}$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{n^{2}}$ s.t. \mathbf{z}_{x} has $\frac{n}{\log n} 1$'s

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{n^{2}}$ s.t. \mathbf{z}_{x} has $\frac{n}{\log n} 1$'s
- There exists polynomials $\left\{p_{x}\right\}_{x}$ for each x s.t. degree- $O(\sqrt{n / \log n})$ over \mathbb{Z}_{6}
$p_{y}\left(\mathbf{z}_{x}\right)= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{n^{2}}$ s.t. \mathbf{z}_{x} has $\frac{n}{\log n} 1$'s
- There exists polynomials $\left\{p_{x}\right\}_{x}$ for each x s.t. degree- $O(\sqrt{n / \log n})$ over \mathbb{Z}_{6} $p_{y}\left(\mathbf{z}_{x}\right)= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- Let \mathbf{v}_{x} be the coefficients of p_{y} and \mathbf{u}_{x} be all degree- $O(\sqrt{n / \log n})$ monomials of \mathbf{z}_{x}

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{n^{2}}$ s.t. \mathbf{z}_{x} has $\frac{n}{\log n} 1$'s
- There exists polynomials $\left\{p_{x}\right\}_{x}$ for each x s.t. degree- $O(\sqrt{n / \log n})$ over \mathbb{Z}_{6} $p_{y}\left(\mathbf{z}_{x}\right)= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- Let \mathbf{v}_{x} be the coefficients of p_{y} and \mathbf{u}_{x} be all degree- $O(\sqrt{n / \log n})$ monomials of \mathbf{z}_{x}
- $\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle=p_{y}\left(\mathbf{z}_{x}\right)$
length $=\#$ monomials $=\left(n^{2}\right)^{O(\sqrt{n / \log n})}=2^{O(\sqrt{n \log n})}$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{n^{2}}$ s.t. \mathbf{z}_{x} has $\frac{n}{\log n} 1$'s
- There exists polynomials $\left\{p_{x}\right\}_{x}$ for each x s.t. degree- $O(\sqrt{n / \log n})$ over \mathbb{Z}_{6} $p_{y}\left(\mathbf{z}_{x}\right)= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- Let \mathbf{v}_{x} be the coefficients of p_{y} and \mathbf{u}_{x} be all degree- $O(\sqrt{n / \log n})$ monomials of \mathbf{z}_{x}
- $\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle=p_{y}\left(\mathbf{z}_{x}\right)$
length $=\#$ monomials $=\left(n^{2}\right)^{O(\sqrt{n / \log n})}=2^{O(\sqrt{n \log n})}$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{n^{2}}$ simplify s.t. \mathbf{z}_{x} has $\frac{n}{\log n} 1$'s $x \mapsto \mathbf{Z}_{X}$
- There exists polynomials $\left\{p_{x}\right\}_{x}$ for each x s.t. degree- $O(\sqrt{n / \log n})$ over \mathbb{Z}_{6} $p_{y}\left(\mathbf{z}_{x}\right)= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- Let \mathbf{v}_{x} be the coefficients of p_{y} and \mathbf{u}_{x} be all degree- $O(\sqrt{n / \log n})$ monomials of \mathbf{z}_{x} simple
$\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle=p_{y}\left(\mathbf{z}_{x}\right)$
length $=\#$ monomials $=\left(n^{2}\right)^{O(\sqrt{n / \log n})}=2^{O(\sqrt{n \log n})}$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{2 n}$ s.t. \mathbf{z}_{x} has $n 1$'s simplify

There exists polynomials $\left\{p_{x}\right\}_{x}$ for each x s.t. degree- $O(\sqrt{n / \log n})$ over \mathbb{Z}_{6} $p_{y}\left(\mathbf{z}_{x}\right)= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$

- Let \mathbf{v}_{x} be the coefficients of p_{y} and \mathbf{u}_{x} be all degree- $O(\sqrt{n / \log n})$ monomials of \mathbf{z}_{x} simple
$\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle=p_{y}\left(\mathbf{z}_{x}\right)$
length $=\#$ monomials $=\left(n^{2}\right)^{O(\sqrt{n / \log n})}=2^{O(\sqrt{n \log n})}$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{2 n}$ simplify s.t. \mathbf{z}_{x} has $n 1$'s; map $0 \mapsto 01,1 \mapsto 10$
- There exists polynomials $\left\{p_{x}\right\}_{x}$ for each x s.t. degree- $O(\sqrt{n / \log n})$ over \mathbb{Z}_{6} $p_{y}\left(\mathbf{z}_{x}\right)= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- Let \mathbf{v}_{x} be the coefficients of p_{y} and \mathbf{u}_{x} be all degree- $O(\sqrt{n / \log n})$ monomials of \mathbf{z}_{x} simple
$\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle=p_{y}\left(\mathbf{z}_{x}\right)$
length $=\#$ monomials $=\left(n^{2}\right)^{O(\sqrt{n / \log n})}=2^{O(\sqrt{n \log n})}$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{2 n}$ simplify s.t. \mathbf{z}_{X} has $n 1$'s; map $0 \mapsto 01,1 \mapsto 10$

$$
x \mapsto \mathbf{z}_{x}
$$

- There exists polynomials $\left\{p_{x}\right\}_{x}$ for each x s.t. degree- $O(\sqrt{n})$ over \mathbb{Z}_{6} $p_{y}\left(\mathbf{z}_{x}\right)= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- Let \mathbf{v}_{x} be the coefficients of p_{y} and \mathbf{u}_{x} be all degree- $O(\sqrt{n})$ monomials of \mathbf{z}_{x} simple
$\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle=p_{y}\left(\mathbf{z}_{x}\right)$
length $=\#$ monomials $=\left(n^{2}\right)^{O(\sqrt{n / \log n})}=2^{O(\sqrt{n \log n})}$

2-party CDS \Longrightarrow Multi-party CDS

New Construction of Matching Vectors $x \mapsto\left(\mathbf{u}_{x}, \mathbf{v}_{x}\right)$

- Each $x \in\{0,1\}^{n}$ is mapped to $\mathbf{z}_{x} \in\{0,1\}^{2 n}$ simplify s.t. \mathbf{z}_{X} has $n 1$'s; map $0 \mapsto 01,1 \mapsto 10$

$$
x \mapsto \mathbf{z}_{x}
$$

- There exists polynomials $\left\{p_{x}\right\}_{x}$ for each x s.t. degree- $O(\sqrt{n})$ over \mathbb{Z}_{6} $p_{y}\left(\mathbf{z}_{x}\right)= \begin{cases}0, & \text { if } x=y \\ \neq 0, & \text { o.w. }\end{cases}$
- Let \mathbf{v}_{x} be the coefficients of p_{y} and \mathbf{u}_{x} be all degree- $O(\sqrt{n})$ monomials of \mathbf{z}_{x} simple
$\left\langle\mathbf{u}_{x}, \mathbf{v}_{y}\right\rangle=p_{y}\left(\mathbf{z}_{x}\right)$ length $=\#$ monomials $=(2 n)^{O(\sqrt{n})}=2^{O(\sqrt{n} \log n)}$

2-party CDS \Longrightarrow Multi-party CDS

- Simpler matching vector $x \mapsto \mathbf{u}_{x}$

2-party CDS \Longrightarrow Multi-party CDS

- Simpler matching vector $x \mapsto \mathbf{u}_{x}$
- (2-party CDS) Bob's message is a small formula

2-party CDS \Longrightarrow Multi-party CDS

- Simpler matching vector $x \mapsto \mathbf{u}_{x}$
- (2-party CDS) Bob's message is a small formula
- (multi-party CDS) n parties can be efficiently emulate Bob

Our Results

- Simpler matching vector $x \mapsto \mathbf{u}_{x}$
- (2-party CDS) Bob's message is a small formula
- (multi-party CDS) n parties can be efficiently emulate Bob

Multi-party CDS

There is a multi-party CDS scheme with communication complexity $2^{O(\sqrt{n} \log n)}$ as long as the total input length is n bits.

Our Results

- Simpler matching vector $x \mapsto \mathbf{u}_{x}$
- (2-party CDS) Bob's message is a small formula
- (multi-party CDS) n parties can be efficiently emulate Bob

Multi-party CDS

There is a multi-party CDS scheme with communication complexity $2^{O(\sqrt{n} \log n)}$ as long as the total input length is n bits.

Secret sharing for double-exponentially many access functions

There is a collection of $2^{2^{n / 2}}$ access functions, s.t.
$\forall F$ in the family has a secret sharing scheme with share size $2^{O(\sqrt{n} \log n)}$.

Our Results

2-party CDS

Multi-party CDS

$O\left(2^{n / 2}\right)$ [GKW'15]

linear reconstruction
$O\left(2^{n / 3}\right)\left[L V W^{\prime} 17\right]$
quadratic reconstruction
$\begin{aligned} & 2^{O(\sqrt{n \log n})}\left[\text { LVW'17] } \longrightarrow 2^{O(\sqrt{n} \log n)} \text { [This] }\right. \\ & \text { general reconstruction } \text { general reconstruction }\end{aligned}$

Our Results

2-party CDS

Multi-party CDS

$O\left(2^{n / 2}\right)[G K W ' 15] \longrightarrow O\left(2^{n / 2}\right)$ [This, BP' 18]
linear reconstruction linear reconstruction, optimal

$$
O\left(2^{n / 3}\right)\left[L V W^{\prime} 17\right] \longrightarrow O\left(2^{n / 3}\right)
$$

quadratic reconstruction quadratic reconstruction, optimal

Subsequent Works on Secret Sharing

Secret sharing for even more access functions [This,BKN18]

There is a collection of $2\binom{n}{n / 2}$ access functions, s.t.
$\forall F$ in the family has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

Subsequent Works on Secret Sharing

Secret sharing for even more access functions [This,BKN'18,LV'18]

There is a collection of $2\binom{n}{n / 2}+2^{\Omega(n)}$ access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

Subsequent Works on Secret Sharing

\# monotone function $\leq 2\binom{n}{n / 2} \cdot\left(1+\frac{O(\log n)}{n}\right)$

There is a collection of $2\binom{n}{n / 2}+2^{\Omega(n)}$ access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

Subsequent Works on Secret Sharing

$\#$ monotone function $\leq 2^{\binom{n}{n / 2} \cdot\left(1+\frac{O(\log n)}{n}\right)}$
Secret sharing for even more access functions [This,BKN'18,LV'18]
There is a collection of $2\binom{n}{n / 2}+2^{\Omega(n)}$ access functions, s.t. $\forall F$ in the family has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

Secret sharing for all access functions [LV'18 ©STOC]

$\forall F$ has a secret sharing scheme with share size $2^{0.994 n}$.

To Summarize

(or representation)
 Can communication \ll computation size?

To Summarize

(or representation)
 Can communication \ll computation size?

Computational

- FHE

To Summarize

(or representation)
 Can communication \ll computation size?

Computational

- FHE

Information theoretic

- Private Information Retrieval

To Summarize

(or representation)
 Can communication \ll computation size?

Computational

- FHE

Information theoretic

- Private Information Retrieval
- Conditional Disclosure of Secrets

2-party \& multiparty case

To Summarize

(or representation)
 Can communication \ll computation size?

Computational

- FHE

Information theoretic

- Private Information Retrieval
- Conditional Disclosure of Secrets

2-party \& multiparty case

- Secret Sharing for $2^{2^{\Omega(n)}}$ access functions potentially for all access functions

To Summarize

(or representation)
 Can communication \ll computation size?

Computational

- FHE

Information theoretic

- Private Information Retrieval
- Conditional Disclosure of Secrets

2-party \& multiparty case

- Secret Sharing for $2^{2^{\Omega(n)}}$ access functions potentially for all access functions
- What's next?

