Breaking the Circuit-Size Barrier in Secret Sharing

Tianren Liu Vinod Vaikuntanathan
MIT
MIT

50th ACM Symposium on Theory of Computing June 27, 2018

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki'87]
Secret
53
©

(a)

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki' 87$]$

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki'87]

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki' 87$]$

Can this subset of participants recover the secret?

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki' 87$]$

Can this subset of participants recover the secret?

Threshold Secret Sharing [Shamir'79]
Any subset of $\geq k$ participants can recover the secret.
Any subset of $<k$ participants learns no information.

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki' 87$]$

Can this subset of participants recover the secret?
Threshold Secret Sharing [Shamir'79]
Any subset of $\geq k$ participants can recover the secret.
Any subset of $<k$ participants learns no information.
General Secret Sharing [ISN'89] monotone $F:\{0,1\}^{n} \rightarrow\{0,1\}$ Any subset X that $F(X)=1$ can recover the secret. Any subset X that $F(X)=0$ learns no information.

Secret Sharing [Blakley'79,Shamir'79,Ito-Saito-Nishizeki' 87$]$

Can this subset of participants recover the secret?
Threshold Secret Sharing [Shamir'79]
Any subset of $\geq k$ participants can recover the secret.
Any subset of $<k$ participants learns no information.
General Secret Sharing [ISN'89] monotone $F:\{0,1\}^{n} \rightarrow\{0,1\}$ Any subset X that $F(X)=1$ can recover the secret.
Any subset X that $F(X)=0$ learns no information.

A General Secret Sharing Scheme [Benaloh-Leichter'88]

F is computed by some monotone formula

Total share size $=$ formula size of $F \leq \tilde{O}\left(2^{n}\right)$

A General Secret Sharing Scheme [Benaloh-Leichter'88]

F is computed by some monotone formula

Total share size $=$ formula size of $F \leq \tilde{O}\left(2^{n}\right)$

A General Secret Sharing Scheme [Benaloh-Leichter'88]

F is computed by some monotone formula

- Generate a tag for each wire
- Output wire tag: the secret s
the output wire tag
- OR gate: copy the output wire tag
- The i-th participant's share: all tags of its input wires

Total share size $=$ formula size of $F \leq \tilde{O}\left(2^{n}\right)$

A General Secret Sharing Scheme [Benaloh-Leichter'88]

F is computed by some monotone formula

- Generate a tag for each wire
- Output wire tag: the secret s
- AND gate: additively share the output wire tag
- The i-th participant's share: all tags of its input wires

Total share size $=$ formula size of $F \leq \tilde{O}\left(2^{n}\right)$

A General Secret Sharing Scheme [Benaloh-Leichter'88]

F is computed by some monotone formula

- Generate a tag for each wire
- Output wire tag: the secret s
- AND gate: additively share the output wire tag
- OR gate: copy the output wire tag
- The i-th participant's share: all tags of its input wires

Total share size $=$ formula size of $F \leq \tilde{O}\left(2^{n}\right)$

A General Secret Sharing Scheme [Benaloh-Leichter' 88]

F is computed by some monotone formula

- Generate a tag for each wire
- Output wire tag: the secret s
- AND gate: additively share the output wire tag
- OR gate: copy the output wire tag
- The i-th participant's share: all tags of its input wires

Total share size $=$ formula size of $F \leq \tilde{O}\left(2^{n}\right)$

A General Secret Sharing Scheme [Benaloh-Leichter'88]

F is computed by some monotone formula

- Generate a tag for each wire
- Output wire tag: the secret s
- AND gate: additively share the output wire tag
- OR gate: copy the output wire tag
- The i-th participant's share: all tags of its input wires

Total share size $=$ formula size of F $\leq \tilde{O}\left(2^{n}\right)$

A General Secret Sharing Scheme [Benaloh-Leichter' 88]

F is computed by some monotone formula

- Generate a tag for each wire
- Output wire tag: the secret s
- AND gate: additively share the output wire tag
- OR gate: copy the output wire tag
- The i-th participant's share: all tags of its input wires

Total share size $=$ formula size of $F \leq \tilde{O}\left(2^{n}\right)$

Key Complexity Measure: Total Share Size

Upper Bounds

Share size $=O$ (monotone formula size) [Benaloh-Leichter'88]

Key Complexity Measure: Total Share Size

Upper Bounds

Share size $=O$ (monotone formula size) [Benaloh-Leichter'88]
Share size $=O$ (monotone span program size) [Karchmer-Wigderson'93]

Key Complexity Measure: Total Share Size

Upper Bounds

Share size $=O($ monotone formula size $) \leq \frac{2^{n}}{\operatorname{poly}(n)}$.
Share size $=O($ monotone span program size $) \leq \frac{2^{n}}{\text { poly }(n)}$.

Key Complexity Measure: Total Share Size

Upper Bounds

Share size $=O($ monotone formula size $) \leq \frac{2^{n}}{\text { poly }(n)}$.
Share size $=O($ monotone span program size $) \leq \frac{2^{n}}{\text { poly }(n)}$.

Lower Bounds

Exists an explicit F s.t. total share size $=\tilde{\Omega}\left(n^{2}\right)$. [Csirmaz'97]

Key Complexity Measure: Total Share Size

Upper Bounds

Share size $=O($ monotone formula size $) \leq \frac{2^{n}}{\text { poly }(n)}$.
Share size $=O($ monotone span program size $) \leq \frac{2^{n}}{\text { poly }(n)}$.

Lower Bounds

Exists an explicit F s.t. total share size $=\tilde{\Omega}\left(n^{2}\right)$. [Csirmaz'97]
(No better lower bounds, even existentially.)

Key Complexity Measure: Total Share Size

Upper Bounds

Share size $=O($ monotone formula size $) \leq \frac{2^{n}}{\text { poly }(n)}$.
Share size $=O($ monotone span program size $) \leq \frac{2^{n}}{\text { poly }(n)}$.

Lower Bounds

Exists an explicit F s.t. total share size $=\tilde{\Omega}\left(n^{2}\right)$. [Csirmaz'97]
(No better lower bounds, even existentially.)

Can we do better?

$$
30^{+} \text {-year-old open problem }
$$

Our Results

Yes, we can!

Theorem 1

Every monotone F has a secret sharing scheme with share size $2^{0.994 n}$.

Key Complexity Measure: Total Share Size

Upper Bounds: Linearr Secret Sharing

Share size $=O($ monotone formula size $) \leq \frac{2^{n}}{\operatorname{poly}(n)}$.
Share size $=\Theta($ monotone span program size $) \leq \frac{2^{n}}{\operatorname{poly}(n)}$.
Lower Bounds: Linnearr Secret Sharing
Exists $\left\{F_{n}\right\}$ s.t. total share size $=\tilde{\Omega}\left(2^{n / 2}\right)$.

Can we do better?

Key Complexity Measure: Total Share Size

Upper Bounds: Linear Secret Sharing

Share size $=O($ monotone formula size $) \leq \frac{2^{n}}{\operatorname{poly}(n)}$.
Share size $=\Theta($ monotone span program size $) \leq \frac{2^{n}}{\text { poly }(n)}$.

Lower Bounds: Linear Secret Sharing

Exists $\left\{F_{n}\right\}$ s.t. total share size $=\tilde{\Omega}\left(2^{n / 2}\right)$.
($2^{\Omega(n)}$ for an explicit $\left\{F_{n}\right\}$ [Pitassi-Robere'18])

Can we do better?

Our Results

Yes, we can!

Theorem 2

Every monotone F has a linear secret sharing with share size $2^{0.999 n}$.

Our Results

Yes, we can!

Theorem 2

Every monotone F has a linear secret sharing with share size $2^{0.999 n}$.

Corollary

Every monotone F has a monotone span program of size $2^{0.999 n}$.

Our Approach

Every monotone F can be computed by a monotone formula s.t.
Prop. I
Prop. II

Our Approach

Every monotone F can be computed by a monotone formula s.t.
Prop. I has size $2^{0.994 n}$
Prop. II

Our Approach

Every monotone F can be computed by a monotone formula s.t.
Prop. I has size $2^{0.994 n}$
Prop. II

$$
\text { Formula size } \gtrsim \log (\# \text { Monotone Functions }) \geq \frac{2^{n}}{\text { poly }(n)}
$$

Our Approach

Every monotone F can be computed by a monotone formula s.t.
Prop. I has size $2^{0.994 n}$
Prop. II

Formula size $\times \log (\#$ Base Gates $) \geq \log (\#$ Monotone Functions $) \geq \frac{2^{n}}{\operatorname{poly}(n)}$

Our Approach

Every monotone F can be computed by a monotone formula s.t.
Prop. I has size $2^{0.994 n}$
Prop. II

Formula size $\times \log (\#$ Base Gates $) \geq \log (\#$ Monotone Functions $) \geq \frac{2^{n}}{\text { poly }(n)}$
\Longrightarrow Requires $2^{\tilde{\Omega}\left(2^{n}\right)}$ gates in formula basis.

Our Approach

Every monotone F can be computed by a monotone formula s.t.
Prop. I has size $2^{0.994 n}$ using an extended basis of $2^{\tilde{\Omega}\left(2^{n}\right)}$ gates Prop. II

Our Approach

Every monotone F can be computed by a monotone formula s.t.
Prop. I has size $2^{0.994 n}$ using an extended basis of $2^{\tilde{\Omega}\left(2^{n}\right)}$ gates
Prop. II every gate in the basis is a monotone function that has an efficient secret sharing scheme

Our Approach

Every monotone F can be computed by a monotone formula s.t.
Prop. I has size $2^{0.994 n}$ using an extended basis of $2^{\tilde{\Omega}\left(2^{n}\right)}$ gates
Prop. II every gate in the basis is a monotone function that has an efficient secret sharing scheme

Base gates [Liu-Vaikuntanathan-Wee'18]

We define slice functions, there are $2^{\left(n_{n / 2}^{n}\right)}$ of them and they have secret scharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

Our Approach

Slice Functions

all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{\left(n^{n} / 2\right)}$
Share size $=2 \tilde{O}(\sqrt{n})$

Our Approach

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{(n / 2)}$
Share size $=2 \tilde{O}(\sqrt{n})$

Monotone Functions
all monotone F
monotone formula

$$
\text { size: } 2^{0.994 n}
$$

depth: constant
gates: \wedge, \vee, slice functions

Our Approach

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{\left(n^{n} / 2\right)}$
Share size $=2^{\tilde{O}(\sqrt{n})} \quad$ Share size $=2^{(1-c) n}$

Fat-Slice Functions
Monotone Functions
all F such that
$\|x\|>.51 n \Rightarrow F(x)=1$
$\|x\|<.49 n \Rightarrow F(x)=0$
all monotone F
monotone formula
size: $2^{0.994 n}$
depth: constant
gates: \wedge, \vee, slice functions

Our Approach

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{\left(n^{n} / 2\right)}$
Share size $=2 \tilde{O}(\sqrt{n})$

Fat-Slice Functions
all F such that
$\|x\|>.51 n \Rightarrow F(x)=1$
$\|x\|<.49 n \Rightarrow F(x)=0$

Monotone Functions
all monotone F

Share size $=2^{(1-c) n}$
Share size $=2^{0.994 n}$
monotone formula size: $2^{(1-c) n}$
depth: constant
gates: \wedge, \vee, slice func
monotone formula

$$
\text { size: } 2^{\left(1-c^{\prime}\right) n}
$$

depth: constant
gates: $\wedge, \vee, 1 \times$ fat-slice func

Our Approach

Slice Functions

Fat-Slice Functions
all F such that
$\|x\|>.51 n \Rightarrow F(x)=1$
$\|x\|<.49 n \Rightarrow F(x)=0$
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$

Monotone Functions
$\#$ functions $=2\binom{n}{n / 2}$

monotone formula
size: $2^{(1-c) n}$
depth: constant
gates: \wedge, \vee, slice func
monotone formula
size: $2^{\left(1-c^{\prime}\right) n}$
depth: constant
gates: $\wedge, \vee, 1 \times$ fat-slice func

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function. Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ as the following:

$F_{\text {bot }}$ is the smallest monotone
function that agrees with F on all input x that $\|x\|<.49 n$.
$F_{\text {top }}$ is the largest monotone
function that agrees with F on all input x that $\|x\|>.51 n$.

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ as the following:

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ as the following:

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ as the following:

$$
\begin{aligned}
& F_{\operatorname{mid}}(x) \\
& = \begin{cases}0, & \text { if }\|x\|<.49 n \\
F(x), & \text { if }\|x\| \approx .5 n \\
1, & \text { if }\|x\|>.51 n\end{cases}
\end{aligned}
$$

$F_{\text {mid }}$ is a fat-slice function. Share size $=2^{(1-c) n}$
$F_{\text {bot }}$ is the smallest monotone function that agrees with F on all input x that $\|x\|<.49 n$.

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ as the following:

$$
\begin{aligned}
& F_{\text {mid }}(x) \\
& = \begin{cases}0, & \text { if }\|x\|<.49 n \\
F(x), & \text { if }\|x\| \approx .5 n \\
1, & \text { if }\|x\|>.51 n\end{cases}
\end{aligned}
$$

$F_{\text {mid }}$ is a fat-slice function. Share size $=2^{(1-c) n}$

$F_{\text {bot }}$ is the smallest monotone function that agrees with F on all input x that $\|x\|<.49 n$.
$F_{\text {top }}$ is the largest monotone function that agrees with F on all input x that $\|x\|>.51 n$.

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ as the following:

$$
\begin{aligned}
& F_{\text {bot }}(x) \\
& =\bigvee_{\substack{y \text { s.t. } \\
\|y\|<.49 n \\
F(y)=1}} \mathbb{1}_{x \geq y} \\
& =\bigvee_{\substack{y \text { s.t. } \\
\|y\|<.49 n \\
F(y)=1}} \bigwedge_{i, y_{i}=1} x_{i}
\end{aligned}
$$

$$
F_{\text {mid }}(x)
$$

$$
= \begin{cases}0, & \text { if }\|x\|<.49 n \\ F(x), & \text { if }\|x\| \approx .5 n \\ 1, & \text { if }\|x\|>.51 n\end{cases}
$$

$$
\begin{aligned}
& F_{\text {top }}(x) \\
& =\bigwedge_{\substack{y \text { s.t. } \\
\|y\| .5 n n \\
F(y)=0}} \mathbb{1}_{x \nless y} \\
& =\bigwedge_{\substack{y \text { s.t. } \\
\|y 1\| .51 n \\
\\
F(y)=0}} \bigvee_{y_{i}=0} x_{i}
\end{aligned}
$$

$F_{\text {bot }}$ is the smallest monotone function that agrees with F on all input x that $\|x\|<.49 n$.
$F_{\text {top }}$ is the largest monotone function that agrees with F on all input x that $\|x\|>.51 n$.

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ as the following:

$$
\begin{aligned}
& F_{\text {mid }}(x) \\
& = \begin{cases}0, & \text { if }\|x\|<.49 n \\
F(x), & \text { if }\|x\| \approx .5 n \\
1, & \text { if }\|x\|>.51 n\end{cases}
\end{aligned}
$$

$F_{\text {mid }}$ is a fat-slice function. Share size $=2^{(1-c) n}$
$F_{\text {bot }}, F_{\text {top }}$ has monotone formula of size $2^{h(.49) \cdot n}=2^{\left(1-c^{\prime}\right) n}$
\Longrightarrow Share size $=2^{\left(1-c^{\prime}\right) n}$

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ such that:

	$F_{\text {bot }}(x)$	$F_{\text {mid }}(x)$	$F_{\text {top }}(x)$		
$\\|x\\|<.49 n$	$=F(x)$	$=0$	$\geq F(x)$		
$\\|x\\| \in[.49 n, .51 n]$	$\leq F(x)$	$=F(x)$			
$\\|x\\|>.51 n$		$=1$	$=F(x)$		

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ such that:

	$F_{\text {bot }}(x)$	$F_{\text {mid }}(x)$	$F_{\text {top }}(x)$		
$\\|x\\|<.49 n$	$=F(x)$	$=0$	$\geq F(x)$		
$\\|x\\| \in[.49 n, .51 n]$	$\leq F(x)$	$=F(x)$			
$\\|x\\|>.51 n$		$=1$	$=F(x)$		

- $F(x)=\operatorname{Majority}\left(F_{\text {bot }}(x), F_{\text {mid }}(x), F_{\text {top }}(x)\right)$

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ such that:

	$F_{\text {bot }}(x)$	$F_{\text {mid }}(x)$	$F_{\text {top }}(x)$		
$\\|x\\|<.49 n$	$=F(x)$	$=0$	$\geq F(x)$		
$\\|x\\| \in[.49 n, .51 n]$	$\leq F(x)$	$=F(x)$			
$\\|x\\|>.51 n$		$=1$	$=F(x)$		

- $F(x)=\left(F_{\text {bot }}(x) \vee F_{\text {mid }}(x)\right) \wedge F_{\text {top }}(x)$

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ such that:

- $F_{\text {mid }}$ lays in "a fat slice" [49\%,51\%]
\Longrightarrow Share size of $F_{\text {mid }}=2^{(1-c) n}$
- $F_{\text {bot }}, F_{\text {top }}$ computed by size- $2^{h(.49) \cdot n}$ formula \Longrightarrow Share size of $F_{\text {bot }}, F_{\text {top }}=2^{\left(1-c^{\prime}\right) n}$
- $F(x)=F_{\text {bot }}(x) \vee F_{\text {mid }}(x) \wedge F_{\text {top }}(x)$

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ such that:

- $F_{\text {mid }}$ lays in "a fat slice" [49\%,51\%]
\Longrightarrow Share size of $F_{\text {mid }}=2^{(1-c) n}$
$-F_{\text {bot }}, F_{\text {top }}$ computed by size- $2^{h(.49) \cdot n}$ formula \Longrightarrow Share size of $F_{\text {bot }}, F_{\text {top }}=2^{\left(1-c^{\prime}\right) n}$
- $F(x)=F_{\text {bot }}(x) \vee F_{\text {mid }}(x) \wedge F_{\text {top }}(x)$
\Longrightarrow Share size of $F=2^{(1-c) n}+2 \cdot 2^{\left(1-c^{\prime}\right) n}$

$$
=O\left(2^{\max \left(1-c, 1-c^{\prime}\right) n}\right)
$$

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ such that:

- $F_{\text {mid }}$ lays in "a fatter slice" [40\%,60\%]
\Longrightarrow Share size of $F_{\text {mid }}=2^{(1-c) n}$
$-F_{\text {bot }}, F_{\text {top }}$ computed by size- $2^{h(.49) \cdot n}$ formula \Longrightarrow Share size of $F_{\text {bot }}, F_{\text {top }}=2^{\left(1-c^{\prime}\right) n}$
- $F(x)=F_{\text {bot }}(x) \vee F_{\text {mid }}(x) \wedge F_{\text {top }}(x)$
\Longrightarrow Share size of $F=2^{(1-c) n}+2 \cdot 2^{\left(1-c^{\prime}\right) n}$

$$
=O\left(2^{\max \left(1-c, 1-c^{\prime}\right) n}\right)
$$

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ such that:

- $F_{\text {mid }}$ lays in "a fatter slice" [40\%,60\%]
\Longrightarrow Share size of $F_{\text {mid }}=2^{(1-c) n}$ increase $\uparrow \uparrow$
- $F_{\text {bot }}, F_{\text {top }}$ computed by size- $2^{h(.49) \cdot n}$ formula \Longrightarrow Share size of $F_{\text {bot }}, F_{\text {top }}=2^{\left(1-c^{\prime}\right) n}$
- $F(x)=F_{\text {bot }}(x) \vee F_{\text {mid }}(x) \wedge F_{\text {top }}(x)$
\Longrightarrow Share size of $F=2^{(1-c) n}+2 \cdot 2^{\left(1-c^{\prime}\right) n}$

$$
=O\left(2^{\max \left(1-c, 1-c^{\prime}\right) n}\right)
$$

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ such that:

- $F_{\text {mid }}$ lays in "a fatter slice" [40\%,60\%]
\Longrightarrow Share size of $F_{\text {mid }}=2^{(1-c) n}$ increase $\uparrow \uparrow$
- $F_{\text {bot }}, F_{\text {top }}$ computed by size-2 $2^{h(.4) \cdot n}$ formula \Longrightarrow Share size of $F_{\text {bot }}, F_{\text {top }}=2^{\left(1-c^{\prime}\right) n}$
- $F(x)=F_{\text {bot }}(x) \vee F_{\text {mid }}(x) \wedge F_{\text {top }}(x)$
\Longrightarrow Share size of $F=2^{(1-c) n}+2 \cdot 2^{\left(1-c^{\prime}\right) n}$

$$
=O\left(2^{\max \left(1-c, 1-c^{\prime}\right) n}\right)
$$

Fat-Slice Functions \Longrightarrow All Monotone Functions

Let F be any monotone function.
Define $F_{\text {bot }}, F_{\text {mid }}, F_{\text {top }}$ such that:

- $F_{\text {mid }}$ lays in "a fatter slice" [40\%, 60\%]
\Longrightarrow Share size of $F_{\text {mid }}=2^{(1-c) n}$ increase $\uparrow \uparrow$
- $F_{\text {bot }}, F_{\text {top }}$ computed by size- $2^{h(.4) \cdot n}$ formula \Longrightarrow Share size of $F_{\text {bot }}, F_{\text {top }}=2^{\left(1-c^{\prime}\right) n}$ decrease $\downarrow \downarrow$
- $F(x)=F_{\text {bot }}(x) \vee F_{\text {mid }}(x) \wedge F_{\text {top }}(x)$
\Longrightarrow Share size of $F=2^{(1-c) n}+2 \cdot 2^{\left(1-c^{\prime}\right) n}$

$$
=O\left(2^{\max \left(1-c, 1-c^{\prime}\right) n}\right)
$$

To Summarize

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{\left(n^{n} / 2\right)}$
Share size $=2^{\tilde{O}(\sqrt{n})}$

Fat-Slice Functions
all F such that
$\|x\|>.51 n \Rightarrow F(x)=1$
$\|x\|<.49 n \Rightarrow F(x)=0$

Monotone Functions
all monotone F

Share size $=2^{\left(1-c^{\prime}\right) n}$
Share size $=2^{(1-c) n}$

$$
\begin{aligned}
& \text { monotone formula } \\
F(x)= & F_{\text {bot }}(x) \vee F_{\text {mid }}(x) \wedge F_{\text {top }}(x)
\end{aligned}
$$

To Summarize

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{\left(n^{n} / 2\right)}$
Share size $=2 \tilde{O}(\sqrt{n})$

Fat-Slice Functions
Monotone Functions
all F such that
$\|x\|>.51 n \Rightarrow F(x)=1$
$\|x\|<.49 n \Rightarrow F(x)=0$
all monotone F
monotone formula
size: $2^{0.994 n}$
depth: constant
gates: \wedge, \vee, slice functions

To Summarize

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{\left(n^{n} / 2\right)}$
Share size $=2^{\tilde{O}(\sqrt{n})}$
Share size $=2^{\left(1-c^{\prime}\right) n}$
monotone formula
size: $2^{0.994 n}$
depth: constant
gates: \wedge, \vee, slice functions

Previous Work [LVW'18]

Monotone Functions
all monotone F
all F such that
$\|x\|>.51 n \Rightarrow F(x)=1$
$\|x\|<.49 n \Rightarrow F(x)=0$

To Summarize

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{\left(n^{n} / 2\right)}$
Share size $=2 \tilde{O}(\sqrt{n})$

Fat-Slice Functions
Monotone Functions
all monotone F
monotone formula
size: $2^{0.994 n}$
depth: constant
gates: \wedge, \vee, slice functions

To Summarize

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{\left(n^{n} / 2\right)}$
Share size $=2^{\tilde{O}(\sqrt{n})}$

Fat-Slice Functions
Monotone Functions
all monotone F
monotone formula
size: $2^{0.1 n}$
Open Problem!
depth: constant
gates: \wedge, \vee, slice functions

To Summarize

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2^{\left(n^{n} / 2\right)}$
Share size $=2 \tilde{O}(\sqrt{n})$

Monotone Functions
all monotone F
monotone formula
Share size $=2^{\tilde{O}(\sqrt{n})}$
size: $2^{\tilde{O}}(\sqrt{n})$

Open Problem!
depth: constant
gates: \wedge, \vee, slice functions

To Summarize (Linear Secret Sharing)

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2\left(n_{n / 2}^{n}\right)$
Share size $=\tilde{\Theta}\left(2^{n / 2}\right)$

Monotone Functions
all monotone F
monotone formula

$$
\text { size: } 2^{0.999 n}
$$

depth: constant
gates: $\wedge, \vee, 2^{0.499} \times$ slice functions

To Summarize (Linear Secret Sharing)

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2\left(n_{n / 2}^{n}\right)$
Share size $=\tilde{\Theta}\left(2^{n / 2}\right)$ (tight)

Monotone Functions
all monotone F
monotone formula
size: $2^{0.999 n}$
depth: constant
gates: $\wedge, \vee, 2^{0.499} \times$ slice functions

To Summarize (Linear Secret Sharing)

Slice Functions
all F such that
$\|x\|>n / 2 \Longrightarrow F(x)=1$
$\|x\|<n / 2 \Longrightarrow F(x)=0$
$\#$ functions $=2\left(\begin{array}{l}n / 2)\end{array}\right.$
Share size $=\tilde{\Theta}\left(2^{n / 2}\right)($ tight $)$

Monotone Functions
all monotone F

Corollary: Monotone Span Program Complexity

Every monotone F has a monotone span program of size $2^{0.999 n}$.

To Summarize

Secret sharing for any monotone function:

To Summarize

Secret sharing for any monotone function:

Linear secret sharing for any monotone function:

$$
\tilde{\Omega}\left(2^{n / 2}\right) \quad \tilde{O}\left(2^{n}\right)
$$

To Summarize

Secret sharing for any monotone function:

Linear secret sharing for any monotone function:

To Summarize

Secret sharing for any monotone function:
$\Omega\left(n^{2} / \log n\right)$

Linear secret sharing for any monotone function:

To Summarize

All Monotone Functions

$\forall F$ has a secret sharing scheme with share size $2^{0.994 n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999 n}$.

To Summarize

All Monotone Functions

$\forall F$ has a secret sharing scheme with share size $2^{0.994 n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999 n}$.

Slice Functions [LVW' 18, BKN ${ }^{\prime} 18$]

Every slice function (there are $2^{\left({ }_{n / 2}^{n}\right)}$ of them) has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

To Summarize

All Monotone Functions

$\forall F$ has a secret sharing scheme with share size $2^{0.994 n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999 n}$.

Slice Functions [LVW' 18,BKN'18]

Every slice function (there are $2^{\left(n^{n} / 2\right)}$ of them) has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

[LVW'18]

To Summarize

All Monotone Functions

$\forall F$ has a secret sharing scheme with share size $2^{0.994 n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999 n}$.

Slice Functions [LVW'18,BKN'18]

Every slice function (there are $2^{\left({ }_{n}^{n} / 2\right)}$ of them) has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

To Summarize

All Monotone Functions

$\forall F$ has a secret sharing scheme with share size $2^{0.994 n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999 n}$.

Slice Functions [LVW'18,BKN'18]

Every slice function (there are $2^{\left({ }_{n}^{n} / 2\right)}$ of them) has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

[LVW'18]
[LVW'17]
[Yek'08,Efr'09,DG'15]

To Summarize

All Monotone Functions

$\forall F$ has a secret sharing scheme with share size $2^{0.994 n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999 n}$.

Slice Functions [LVW' 18,BKN'18]

Every slice function (there are $2^{\left(n^{n} / 2\right)}$ of them) has a secret sharing scheme with share size $2 \tilde{O}(\sqrt{n})$.

