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Secret Sharing [Blakley’79,Shamir’79,Ito-Saito-Nishizeki’87]

Secret

share1

share4

Can this subset of participants recover the secret?

Threshold Secret Sharing [Shamir’79]

Any subset of ≥ k participants can recover the secret.
Any subset of < k participants learns no information.

General Secret Sharing [ISN’89] monotone F : {0,1}n→{0,1}
Any subset X that F (X ) = 1 can recover the secret.
Any subset X that F (X ) = 0 learns no information.
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A General Secret Sharing Scheme [Benaloh-Leichter’88]

F is computed by some monotone formula

I Generate a tag for each wire
I Output wire tag: the secret s
I AND gate: additively share

the output wire tag
I OR gate: copy the output

wire tag

I The i-th participant’s share:
all tags of its input wires

∧
∨∨ ∨

x2x1 x3 x4

Total share size = formula size of F ≤ Õ(2n)
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Key Complexity Measure: Total Share Size

Upper Bounds

Share size = O(monotone formula size) [Benaloh-Leichter’88]

Lower Bounds

Exists an explicit F s.t. total share size = Ω̃(n2). [Csirmaz’97]
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Our Results

Yes, we can!

Theorem 1

Every monotone F has a secret sharing scheme with share size 20.994n.
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Our Approach

Every monotone F can be computed by a monotone formula s.t.

Prop. I has size 20.994n using an extended basis of 2Ω̃(2n) gates

Prop. II every gate in the basis is a monotone function that has
an efficient secret sharing scheme

Base gates [Liu-Vaikuntanathan-Wee’18]

We define slice functions, there are 2( n
n/2) of them and they have

secret scharing scheme with share size 2Õ(
√
n).
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Fat-Slice Functions =⇒ All Monotone Functions

Let F be any monotone function.
Define Fbot,Fmid,Ftop as the following:

Fbot(x)

=
∨

y s.t.
‖y‖<.49n
F (y)=1

1x≥y

=
∨

y s.t.
‖y‖<.49n
F (y)=1

∧
i ,yi=1

xi

Fmid(x)

=


0, if ‖x‖< .49n

F (x), if ‖x‖ ≈ .5n

1, if ‖x‖> .51n

Fmid is a fat-slice function.

Share size = 2(1−c)n

Ftop(x)

=
∧

y s.t.
‖y‖>.51n
F (y)=0

1x 6≤y

=
∧

y s.t.
‖y‖>.51n
F (y)=0

∨
i ,yi=0

xi

Fbot is the smallest monotone
function that agrees with F on all
input x that ‖x‖< .49n.

Ftop is the largest monotone
function that agrees with F on all
input x that ‖x‖> .51n.
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Fat-Slice Functions =⇒ All Monotone Functions

Let F be any monotone function.
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To Summarize

Slice Functions

all F such that
‖x‖> n/2 =⇒ F (x) = 1
‖x‖< n/2 =⇒ F (x) = 0

#functions = 2( n
n/2)

Share size = 2Õ(
√
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‖x‖> .51n⇒ F (x) = 1
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To Summarize (Linear Secret Sharing)
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‖x‖> n/2 =⇒ F (x) = 1
‖x‖< n/2 =⇒ F (x) = 0
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n/2)

Share size = Θ̃(2n/2)

(tight)

Fat-Slice Functions

all F such that
‖x‖> .51n⇒ F (x) = 1
‖x‖< .49n⇒ F (x) = 0

Share size = 2(1−c ′)n

Monotone Functions

all monotone F

Share size = 20.999n

monotone formula
size: 20.999n

depth: constant
gates: ∧,∨, 20.499×slice functions

Corollary: Monotone Span Program Complexity

Every monotone F has a monotone span program of size 20.999n.
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To Summarize

All Monotone Functions

∀F has a secret sharing scheme with share size 20.994n.
∀F has a linear secret sharing scheme with share size 20.999n.

Slice Functions [LVW’18,BKN’18]

Every slice function (there are 2( n
n/2) of them) has a secret sharing

scheme with share size 2Õ(
√
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