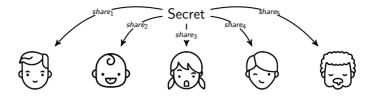
Breaking the Circuit-Size Barrier in Secret Sharing

Tianren Liu Vinod Vaikuntanathan MIT MIT

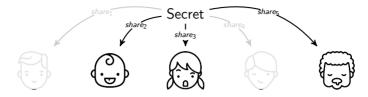
50th ACM Symposium on Theory of Computing June 27, 2018

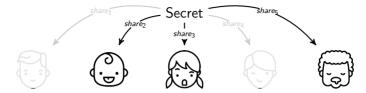
Secret

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



э.

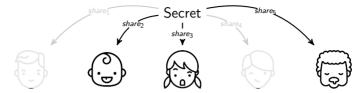




・ コマ・ 小田 マ ス 田 マ ト

1

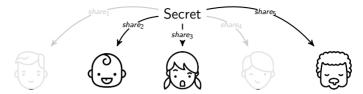
Can this subset of participants recover the secret?



Can this subset of participants recover the secret?

Threshold Secret Sharing [Shamir'79]

Any subset of $\geq k$ participants can recover the secret. Any subset of < k participants learns no information.

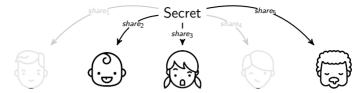


Can this subset of participants recover the secret?

Threshold Secret Sharing [Shamir'79]

Any subset of $\geq k$ participants can recover the secret. Any subset of < k participants learns no information.

General Secret Sharing [ISN'89] monotone $F : \{0,1\}^n \rightarrow \{0,1\}$ Any subset X that F(X) = 1 can recover the secret. Any subset X that F(X) = 0 learns no information.



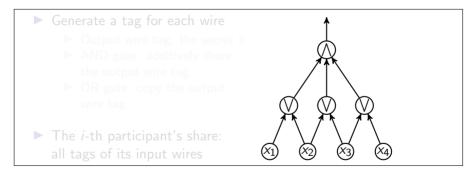
Can this subset of participants recover the secret?

Threshold Secret Sharing [Shamir'79]

Any subset of $\geq k$ participants can recover the secret. Any subset of < k participants learns no information.

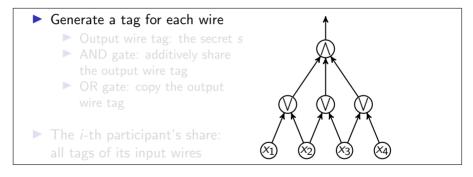
General Secret Sharing [ISN'89] monotone $F : \{0,1\}^n \rightarrow \{0,1\}$ Any subset X that F(X) = 1 can recover the secret. Any subset X that F(X) = 0 learns no information.

F is computed by some monotone formula

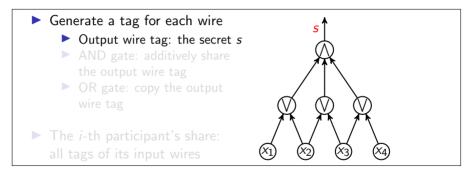


人名英格兰 医马尔氏 化丁二丁

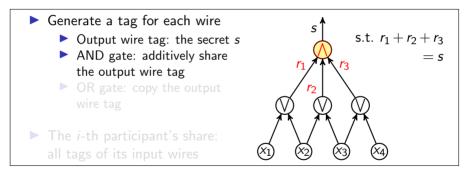
F is computed by some monotone formula



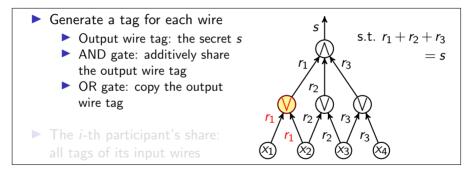
F is computed by some monotone formula



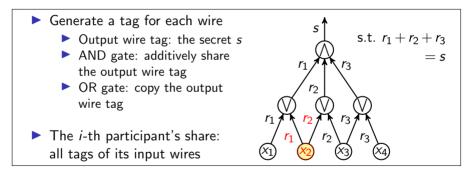
$\ensuremath{\textit{F}}$ is computed by some monotone formula



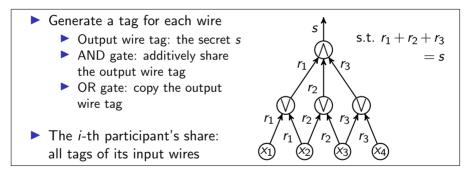
$\ensuremath{\textit{F}}$ is computed by some monotone formula



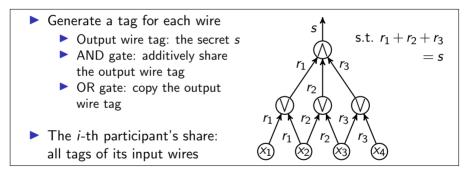
$\ensuremath{\textit{F}}$ is computed by some monotone formula



$\ensuremath{\textit{F}}$ is computed by some monotone formula



F is computed by some monotone formula



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Upper Bounds

Share size = O(monotone formula size) [Benaloh-Leichter'88]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Upper Bounds

Share size = O(monotone formula size) [Benaloh-Leichter'88]

Share size = O(monotone span program size) [Karchmer-Wigderson'93]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Upper Bounds

Share size = $O(\text{monotone formula size}) \le \frac{2^n}{\operatorname{poly}(n)}$. Share size = $O(\text{monotone span program size}) \le \frac{2^n}{\operatorname{poly}(n)}$.

・ロト・日本・日本・日本・日本・日本

Upper Bounds

Share size = $O(\text{monotone formula size}) \le \frac{2^n}{\operatorname{poly}(n)}$. Share size = $O(\text{monotone span program size}) \le \frac{2^n}{\operatorname{poly}(n)}$.

Lower Bounds

Exists an explicit F s.t. total share size $= \tilde{\Omega}(n^2)$. [Csirmaz'97]

・ロト・日本・日本・日本・日本・今日・

Upper Bounds

Share size = $O(\text{monotone formula size}) \le \frac{2^n}{\operatorname{poly}(n)}$. Share size = $O(\text{monotone span program size}) \le \frac{2^n}{\operatorname{poly}(n)}$.

Lower Bounds

Exists an explicit F s.t. total share size $= \tilde{\Omega}(n^2)$. [Csirmaz'97] (No better lower bounds, even existentially.)

Upper Bounds

Share size = $O(\text{monotone formula size}) \le \frac{2^n}{\operatorname{poly}(n)}$. Share size = $O(\text{monotone span program size}) \le \frac{2^n}{\operatorname{poly}(n)}$.

Lower Bounds

Exists an explicit F s.t. total share size $= \tilde{\Omega}(n^2)$. [Csirmaz'97] (No better lower bounds, even existentially.)

Can we do better?

30⁺-year-old open problem

Our Results

Yes, we can!

Theorem 1

Every monotone F has a secret sharing scheme with share size $2^{0.994n}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Upper Bounds: Linear Secret Sharing

Share size = $O(\text{monotone formula size}) \le \frac{2^n}{\operatorname{poly}(n)}$. Share size = $\Theta(\text{monotone span program size}) \le \frac{2^n}{\operatorname{poly}(n)}$.

Lower Bounds: *Linear* Secret Sharing

Exists $\{F_n\}$ s.t. total share size $= \tilde{\Omega}(2^{n/2})$.

Can we do better?

Upper Bounds: Linear Secret Sharing

Share size = $O(\text{monotone formula size}) \le \frac{2^n}{\operatorname{poly}(n)}$. Share size = $\Theta(\text{monotone span program size}) \le \frac{2^n}{\operatorname{poly}(n)}$.

Lower Bounds: Linear Secret Sharing

Exists $\{F_n\}$ s.t. total share size $= \tilde{\Omega}(2^{n/2})$. $(2^{\Omega(n)} \text{ for an explicit } \{F_n\} \text{ [Pitassi-Robere'18]})$

Can we do better?

Our Results

Yes, we can!

Theorem 2

Every monotone F has a linear secret sharing with share size $2^{0.999n}$.

Our Results

Yes, we can!

Theorem 2

Every monotone F has a *linear* secret sharing with share size $2^{0.999n}$.

Corollary

Every monotone F has a monotone span program of size $2^{0.999n}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Every monotone F can be computed by a monotone formula s.t. Prop. I Prop. II

Every monotone F can be computed by a monotone formula s.t. Prop. 1 has size $2^{0.994n}$ Prop. 11

Every monotone F can be computed by a monotone formula s.t. Prop. 1 has size $2^{0.994n}$ Prop. 11

Formula size $\geq \log(\#$ Monotone Functions) $\geq \frac{2^n}{poly(n)}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Every monotone F can be computed by a monotone formula s.t. Prop. 1 has size $2^{0.994n}$ Prop. 11

 $\mathsf{Formula\ size} \times \mathsf{log}(\#\mathsf{Base\ Gates}) \geq \mathsf{log}(\#\mathsf{Monotone\ Functions}) \geq \frac{2^n}{\mathsf{poly}(n)}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Every monotone F can be computed by a monotone formula s.t. Prop. 1 has size $2^{0.994n}$ Prop. 11

Formula size × log(#Base Gates) \geq log(#Monotone Functions) $\geq \frac{2^n}{poly(n)}$

 \implies Requires $2^{\tilde{\Omega}(2^n)}$ gates in formula basis.

Every monotone F can be computed by a monotone formula s.t. Prop. I has size $2^{0.994n}$ using an extended basis of $2^{\tilde{\Omega}(2^n)}$ gates Prop. II

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Every monotone F can be computed by a monotone formula s.t. Prop. I has size $2^{0.994n}$ using an extended basis of $2^{\tilde{\Omega}(2^n)}$ gates Prop. II every gate in the basis is a monotone function that has an efficient secret sharing scheme

Every monotone F can be computed by a monotone formula s.t. Prop. I has size $2^{0.994n}$ using an extended basis of $2^{\tilde{\Omega}(2^n)}$ gates Prop. II every gate in the basis is a monotone function that has an efficient secret sharing scheme

Base gates [Liu-Vaikuntanathan-Wee'18]

We define **slice functions**, there are $2^{\binom{n}{n/2}}$ of them and they have secret scharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

Slice Functions

all F such that $||x|| > n/2 \implies F(x) = 1$ $||x|| < n/2 \implies F(x) = 0$ #functions = $2^{\binom{n}{n/2}}$ Share size = $2^{\tilde{O}(\sqrt{n})}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Slice Functions

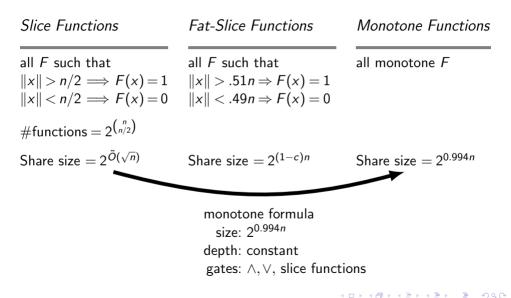
all F such that $||x|| > n/2 \implies F(x) = 1$ $||x|| < n/2 \implies F(x) = 0$ #functions = $2^{\binom{n}{n/2}}$ Share size $= 2^{\tilde{O}(\sqrt{n})}$ monotone formula

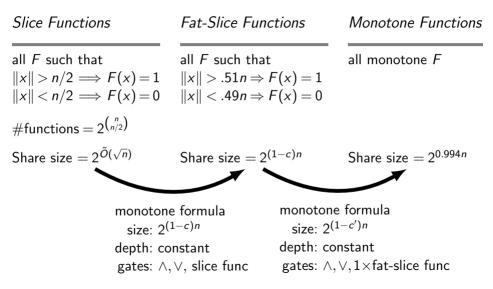
Monotone Functions

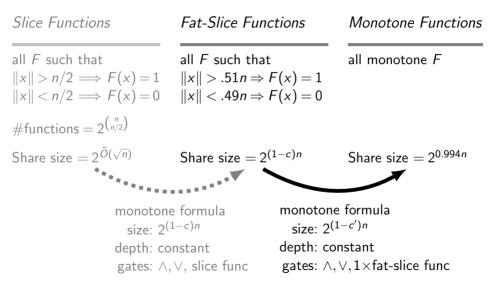
all monotone F

Share size $= 2^{0.994n}$

monotone formula size: $2^{0.994n}$ depth: constant gates: \land, \lor , slice functions







Let F be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ as the following:

$$\begin{array}{ll} F_{\text{bot}}(x) & F_{\text{mid}}(x) \\ = \bigvee_{\substack{y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} \mathbb{1}_{x \ge y} \\ = \begin{cases} 0, & \text{if } \|x\| < .49n \\ F(x), & \text{if } \|x\| \approx .5n \\ 1, & \text{if } \|x\| > .51n \\ 1, & \text{if } \|x\| > .51n \end{cases} \\ F_{\text{mid}} \text{ is a fat-slice function.} \end{aligned}$$

$$F_{top}(x) = \bigwedge_{\substack{y \text{ s.t.} \\ ||y|| > .51n \\ F(y) = 0}} \mathbb{1}_{x \not\leq y}$$
$$= \bigwedge_{\substack{y \text{ s.t.} \\ ||y|| > .51n \\ F(y) = 0}} \bigvee_{i, y_i = 0} x_i$$

 F_{bot} is the smallest monotone function that agrees with F on all input x that ||x|| < .49n. F_{top} is the largest monotone function that agrees with F on all input x that ||x|| > .51n.

Let *F* be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ as the following:

$$\begin{array}{ll} F_{\text{bot}}(x) & F_{\text{mid}}(x) \\ = \bigvee_{\substack{y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} 1_{x \ge y} & = \begin{cases} 0, & \text{if } \|x\| < .49n \\ F(x), & \text{if } \|x\| \approx .5n \\ 1, & \text{if } \|x\| > .51n \end{cases} \\ = \bigvee_{\substack{y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} \bigwedge_{i, y_i = 1} \chi_i & F_{\text{mid}} \text{ is a fat-slice function.} \end{cases}$$

 F_{bot} is the smallest monotone function that agrees with F on all input x that ||x|| < .49n. F_{top} is the largest monotone function that agrees with F on all input x that ||x|| > .51n.

Let *F* be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ as the following:

$$\begin{array}{c|c} F_{\text{bot}}(x) & F_{\text{mid}}(x) & F_{\text{top}}(x) \\ = \bigvee_{\substack{y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} \mathbb{1}_{x \ge y} & = \begin{cases} 0, & \text{if } \|x\| < .49n \\ F(x), & \text{if } \|x\| \approx .5n \\ 1, & \text{if } \|x\| > .51n \\ 1, & \text{if } \|x\| > .51n \end{cases} & = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \le y} & f_{\text{mid}} \text{ is a fat-slice function.} \\ \\ \|y\| < .49n \\ F_{(y)} = 0 & f_{(y)} > .51n \\ f$$

 F_{bot} is the smallest monotone function that agrees with F on all input x that ||x|| < .49n. F_{top} is the largest monotone function that agrees with F on all input x that ||x|| > .51n.

Let *F* be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ as the following:

$$\begin{array}{ll} F_{\text{bot}}(x) & F_{\text{mid}}(x) & F_{\text{mid}}(x) \\ = \bigvee_{\substack{y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} & \{0, & \text{if } \|x\| < .49n \\ = \begin{cases} 0, & \text{if } \|x\| < .49n \\ F(x), & \text{if } \|x\| \approx .5n \\ 1, & \text{if } \|x\| > .51n \\ \end{bmatrix} \\ = \bigvee_{\substack{y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} & F_{\text{mid}} \text{ is a fat-slice function.} \\ \end{array}$$

 F_{bot} is the smallest monotone function that agrees with F on all input x that ||x|| < .49n.

 F_{top} is the largest monotone function that agrees with F on all input x that ||x|| > .51n.

Let *F* be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ as the following:

$$\begin{array}{c} F_{\text{bot}}(x) & F_{\text{mid}}(x) \\ = \bigvee_{\substack{y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} \\ = \bigvee_{\substack{y \text{ s.t.} \\ y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} \\ F_{\text{mid}} \text{ is a fat-slice function.} \\ \end{array} \\ \begin{array}{c} F_{\text{mid}}(x) & F_{\text{top}}(x) \\ = & \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \\ F_{\text{mid}} \text{ is a fat-slice function.} \\ \end{array} \\ \begin{array}{c} F_{\text{mid}} \text{ is a fat-slice function.} \\ \|y\| > .51n \\ F(y) = 0 \end{array} \\ \begin{array}{c} F_{\text{mid}} \text{ is a fat-slice function.} \\ \|y\| > .51n \\ F(y) = 0 \end{array} \\ \end{array} \\ \begin{array}{c} F_{\text{mid}} \text{ is a fat-slice function.} \\ \|y\| > .51n \\ F(y) = 0 \end{array} \\ \begin{array}{c} F_{\text{mid}} \text{ is a fat-slice function.} \\ \|y\| > .51n \\ F(y) = 0 \end{array} \\ \end{array}$$

 F_{bot} is the smallest monotone function that agrees with F on all input x that ||x|| < .49n. F_{top} is the largest monotone function that agrees with F on all input x that ||x|| > .51n.

Let F be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ as the following:

$$\begin{array}{ll}F_{bot}(x) & F_{mid}(x) & F_{top}(x) \\ = \bigvee_{\substack{y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} \mathbb{1}_{x \ge y} & = \begin{cases} 0, & \text{if } \|x\| < .49n \\ F(x), & \text{if } \|x\| \approx .5n \\ 1, & \text{if } \|x\| > .51n \\ 1, & \text{if } \|x\| > .51n \end{cases} & = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \mathbb{1}_{x \ne y} & f_{x \ne y} \\ = \bigwedge_{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ F(y) = 0} \\ = \bigwedge_{y \text{ s.t.} \\ F(y) = 0} \\ = \bigwedge_$$

 F_{bot} is the smallest monotone function that agrees with F on all input x that ||x|| < .49n. F_{top} is the largest monotone function that agrees with F on all input x that ||x|| > .51n.

Let *F* be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ as the following:

$$\begin{array}{c|c} F_{\text{bot}}(x) & F_{\text{mid}}(x) & F_{\text{top}}(x) \\ = \bigvee_{\substack{y \text{ s.t.} \\ \|y\| < .49n \\ F(y) = 1}} 1_{x \ge y} & = \begin{cases} 0, & \text{if } \|x\| < .49n \\ F(x), & \text{if } \|x\| \approx .5n \\ 1, & \text{if } \|x\| > .51n \\ f(x) = 0 \end{cases} & = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{x \ge y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{x \ge y} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0}} 1_{y = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\| > .51n \\ F(y) = 0} \\ = \bigwedge_{\substack{y \text{ s.t.} \\ \|y\|$$

 $F_{\text{bot}}, F_{\text{top}}$ has monotone formula of size $2^{h(.49) \cdot n} = 2^{(1-c')n}$ \implies Share size $= 2^{(1-c')n}$

Let F be any monotone function.

Define $F_{bot}, F_{mid}, F_{top}$ such that:

	$F_{\rm bot}(x)$	$F_{\rm mid}(x)$	$F_{top}(x)$	
x < .49n	=F(x)	= 0	$ > \Gamma(u) $	
$ x \in [.49n, .51n]$		=F(x)	$\geq F(x)$	
x > .51n	$\leq F(x)$	=1	=F(x)	

• $F(x) = Majority(F_{bot}(x), F_{mid}(x), F_{top}(x))$

Let F be any monotone function.

Define $F_{bot}, F_{mid}, F_{top}$ such that:

	$F_{\rm bot}(x)$	$F_{\rm mid}(x)$	$F_{top}(x)$
x < .49n	=F(x)	= 0	$ > \Gamma(u) $
$ x \in [.49n, .51n]$		=F(x)	$\geq F(x)$
x > .51n	$\leq F(x)$	=1	=F(x)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• $F(x) = Majority(F_{bot}(x), F_{mid}(x), F_{top}(x))$

Let F be any monotone function.

Define $F_{bot}, F_{mid}, F_{top}$ such that:

	$F_{\rm bot}(x)$	$F_{\rm mid}(x)$	$F_{top}(x)$
x < .49n	=F(x)	= 0	$ > \Gamma(u) $
$ x \in [.49n, .51n]$		=F(x)	$\geq F(x)$
x > .51n	$\leq F(x)$	=1	=F(x)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\blacktriangleright F(x) = (F_{bot}(x) \lor F_{mid}(x)) \land F_{top}(x)$

Let F be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ such that:

- ► F_{mid} lays in "a fat slice" [49%, 51%] ⇒ Share size of $F_{\text{mid}} = 2^{(1-c)n}$
- ► $F_{\text{bot}}, F_{\text{top}}$ computed by size- $2^{h(.49)\cdot n}$ formula ⇒ Share size of $F_{\text{bot}}, F_{\text{top}} = 2^{(1-c')n}$
- ► $F(x) = F_{bot}(x) \lor F_{mid}(x) \land F_{top}(x)$ \implies Share size of $F = 2^{(1-c)n} + 2 \cdot 2^{(1-c')n}$ $= O(2^{max(1-c,1-c')n})$

Let F be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ such that:

►
$$F_{\text{mid}}$$
 lays in "a fat slice" [49%,51%]
⇒ Share size of $F_{\text{mid}} = 2^{(1-c)n}$

► $F_{\text{bot}}, F_{\text{top}}$ computed by size- $2^{h(.49)\cdot n}$ formula ⇒ Share size of $F_{\text{bot}}, F_{\text{top}} = 2^{(1-c')n}$

$$F(x) = F_{bot}(x) \lor F_{mid}(x) \land F_{top}(x)$$

$$\implies \text{Share size of } F = 2^{(1-c)n} + 2 \cdot 2^{(1-c')n}$$

$$= O(2^{max(1-c,1-c')n})$$

Let F be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ such that:

- ► F_{mid} lays in "a fatter slice" [40%,60%] ⇒ Share size of $F_{\text{mid}} = 2^{(1-c)n}$
- ► $F_{\text{bot}}, F_{\text{top}}$ computed by size- $2^{h(.49)\cdot n}$ formula ⇒ Share size of $F_{\text{bot}}, F_{\text{top}} = 2^{(1-c')n}$

$$F(x) = F_{bot}(x) \lor F_{mid}(x) \land F_{top}(x)$$

$$\implies \text{Share size of } F = 2^{(1-c)n} + 2 \cdot 2^{(1-c')n}$$

$$= O(2^{max(1-c,1-c')n})$$

Let F be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ such that:

- ► F_{mid} lays in "a fatter slice" [40%, 60%] ⇒ Share size of $F_{\text{mid}} = 2^{(1-c)n}$ increase^↑↑
- ► $F_{\text{bot}}, F_{\text{top}}$ computed by size- $2^{h(.49)\cdot n}$ formula ⇒ Share size of $F_{\text{bot}}, F_{\text{top}} = 2^{(1-c')n}$

$$F(x) = F_{bot}(x) \lor F_{mid}(x) \land F_{top}(x)$$

$$\implies \text{Share size of } F = 2^{(1-c)n} + 2 \cdot 2^{(1-c')n}$$

$$= O(2^{max(1-c,1-c')n})$$

Let F be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ such that:

- ► F_{mid} lays in "a fatter slice" [40%,60%] ⇒ Share size of $F_{\text{mid}} = 2^{(1-c)n}$ increase^↑↑
- ► $F_{\text{bot}}, F_{\text{top}}$ computed by size- $2^{h(.4) \cdot n}$ formula ⇒ Share size of $F_{\text{bot}}, F_{\text{top}} = 2^{(1-c')n}$

$$F(x) = F_{bot}(x) \lor F_{mid}(x) \land F_{top}(x)$$

$$\implies \text{Share size of } F = 2^{(1-c)n} + 2 \cdot 2^{(1-c')n}$$

$$= O(2^{max(1-c,1-c')n})$$

Let F be any monotone function. Define $F_{bot}, F_{mid}, F_{top}$ such that:

- ► F_{mid} lays in "a fatter slice" [40%, 60%] ⇒ Share size of $F_{\text{mid}} = 2^{(1-c)n}$ increase ↑↑
- ► $F_{\text{bot}}, F_{\text{top}}$ computed by size- $2^{h(.4) \cdot n}$ formula \implies Share size of $F_{\text{bot}}, F_{\text{top}} = 2^{(1-c')n}$ decrease↓↓

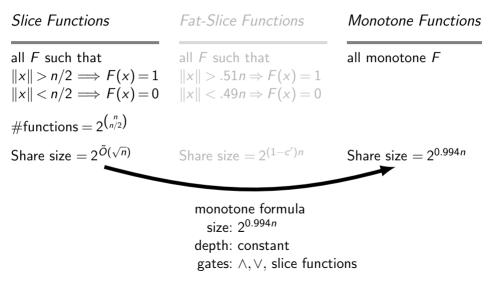
$$F(x) = F_{bot}(x) \lor F_{mid}(x) \land F_{top}(x)$$

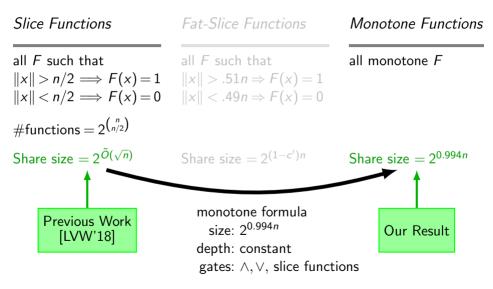
$$\implies \text{Share size of } F = 2^{(1-c)n} + 2 \cdot 2^{(1-c')n}$$

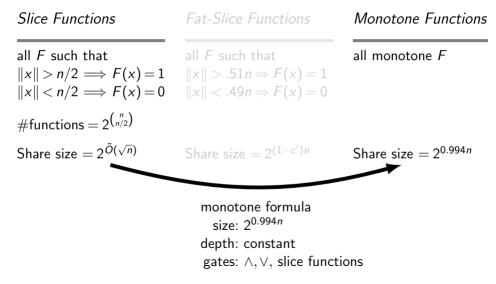
$$= O(2^{max(1-c,1-c')n})$$

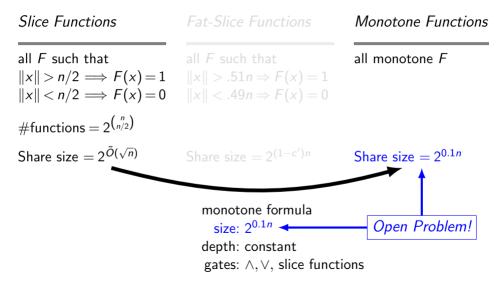
Slice Functions	Fat-Slice Functions	Monotone Functions
all F such that $ x > n/2 \implies F(x) = 1$ $ x < n/2 \implies F(x) = 0$	all F such that $ x > .51n \Rightarrow F(x) = 1$ $ x < .49n \Rightarrow F(x) = 0$	all monotone <i>F</i>
$\#$ functions = 2 ^{$\binom{n}{n/2}$}		
Share size $= 2^{\tilde{O}(\sqrt{n})}$	Share size $= 2^{(1-c')n}$	Share size $= 2^{(1-c)n}$
	monotone formula $F(x) = F_{bot}(x) \lor F_{mid}(x) \land F_{top}(x)$	

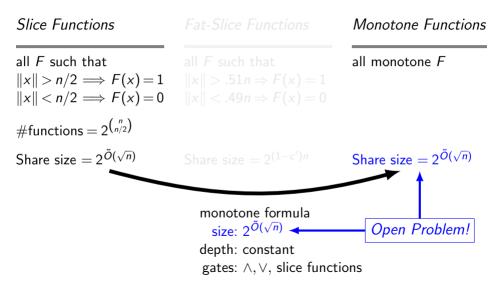
・ロト・4回ト・4回ト・4回ト・4回ト





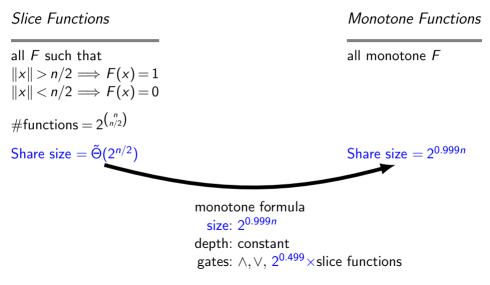




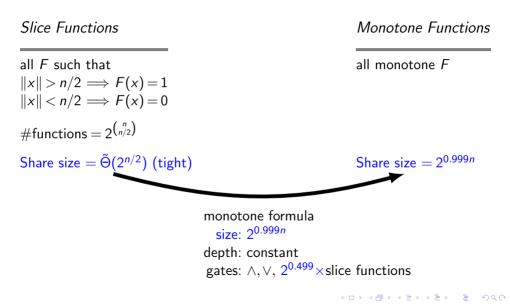


・ロト・西・・田・・日・・日・

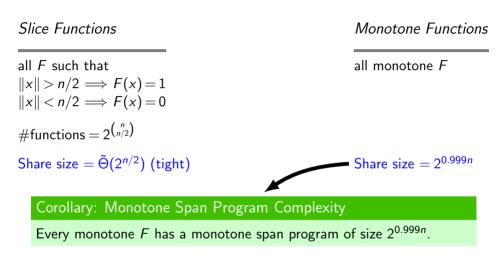
To Summarize (Linear Secret Sharing)



To Summarize (Linear Secret Sharing)



To Summarize (Linear Secret Sharing)



Secret sharing for any monotone function:

$$\Omega(n^2/\log n) \qquad \qquad \tilde{O}(2^n)$$

Secret sharing for any monotone function:

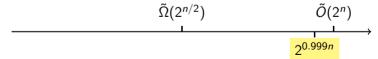
$$\Omega(n^2/\log n)$$
 $ilde{O}(2^n)$

Linear secret sharing for any monotone function:

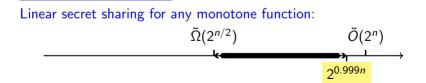
$$\tilde{\Omega}(2^{n/2}) \qquad \tilde{O}(2^n)$$

Secret sharing for any monotone function:

Linear secret sharing for any monotone function:



Secret sharing for any monotone function:



All Monotone Functions

 $\forall F$ has a secret sharing scheme with share size $2^{0.994n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999n}$.

All Monotone Functions

 $\forall F$ has a secret sharing scheme with share size $2^{0.994n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999n}$.

Slice Functions [LVW'18,BKN'18]

Every slice function (there are $2^{\binom{n}{n/2}}$ of them) has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

・ロト・日本・日本・日本・日本・今日・

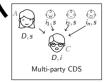
All Monotone Functions

 $\forall F$ has a secret sharing scheme with share size $2^{0.994n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999n}$.

Slice Functions [LVW'18,BKN'18]

Every slice function (there are $2^{\binom{n}{n/2}}$ of them) has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

・ロト・日本・日本・日本・日本・日本

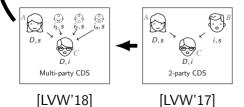


All Monotone Functions

 $\forall F$ has a secret sharing scheme with share size $2^{0.994n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999n}$.

Slice Functions [LVW'18,BKN'18]

Every slice function (there are $2^{\binom{n}{n/2}}$ of them) has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

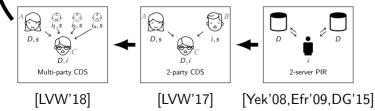


All Monotone Functions

 $\forall F$ has a secret sharing scheme with share size $2^{0.994n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999n}$.

Slice Functions [LVW'18,BKN'18]

Every slice function (there are $2^{\binom{n}{n/2}}$ of them) has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.



All Monotone Functions

 $\forall F$ has a secret sharing scheme with share size $2^{0.994n}$. $\forall F$ has a linear secret sharing scheme with share size $2^{0.999n}$.

Slice Functions [LVW'18,BKN'18]

Every slice function (there are $2^{\binom{n}{n/2}}$ of them) has a secret sharing scheme with share size $2^{\tilde{O}(\sqrt{n})}$.

