Multi-party PSM, Revisited:

Improved Communication and Unbalanced Communication

Tianren Liu ${ }^{1}$ Léonard Assouline ${ }^{2}$
${ }^{1}$ University of Washington, Seattle \rightarrow Peking University, Beijing
${ }^{2}$ École Normale Supérieure, Paris

TCC 2021

Private Simultaneous Messages (PSM)

- Correctness: The referee learns $f\left(x_{1}, \ldots, x_{k}\right)$
- Security: Unbounded referee learns nothing else
- Communication complexity

Motivations

PSM is of theoretical interest

- Minimal model of secure computation

Close connection to ...

- Ad-hoc PSM [BGIK16, BIK17]
- Conditional Disclosure of Secrets (CDS) [GIKM00,LVW18]
- Non-interactive MPC [BGIKMP14]
- (Decomposable) randomized encoding
- Information-theoretic GC [Yao86] \approx PSM where each party has 1-bit input

How communication complexity depends on N, k (worst-case f)
Can communication $\ll N^{k}$?
e.g. CDS's communication $\approx 2^{\sqrt{k \log N}}$

How communication complexity
depends on computation complexity (circuit size, branching program size, etc)

Previous Works and Our Results

Communication for $f:[N]^{k} \rightarrow\{0,1\}$ in PSM model
[FKN94] $O\left(N^{k-1}\right)=$ all-but-one-party input space size
[BKN18] $\quad O_{k}\left(N^{k / 2}\right)=\sqrt{\text { total input space size }}$
[BIKK14] $O\left(N^{1 / 2}\right)$ for $k=2=? ? ? ?$
[BKN18] $O(N), O\left(N^{5 / 3}\right), O\left(N^{7 / 3}\right)$ for $k=3,4,5$ resp. = ????
This work $\quad O_{k}\left(N^{\frac{k-1}{2}}\right)=\sqrt{\text { all-but-one-party input space size }}$

- Yield BIKK and BKN as special cases when $k=2$ or 3
- For infinitely many k, including all $k \leq 20$

Previous Works and Our Results
communication complexity

Previous Works and Our Results (2-party)

Communication for $f:[N] \times[N] \rightarrow\{0,1\}$ in PSM model

[BIKK14] $O\left(N^{1 / 2}\right)$

[FKN94] $O(N)$ for one party, $O(\log N)$ for the other
This work $O\left(N^{\eta}\right)$ for one party, $O\left(N^{1-\eta}\right)$ for the other

- Yield BIKK construction as a special case when $\eta=1 / 2$
- For rational $\eta \in(0,1)$ whose denominator ≤ 20

There are more questions than answers.
(will discuss them in the "open problem" section)

Idea I [CGKs95,Bıкк14]

Target $=f\left(x_{1}, \ldots, x_{k}\right)=\left\langle F, \vec{x}_{1} \otimes \cdots \otimes \vec{x}_{k}\right\rangle$

Notations:

- $\langle\cdot, \cdot\rangle$ denotes the inner product
- F is the truth-table of f, which is a dimension- $(\underbrace{N \times \cdots \times N}_{k \text { times }})$ array

$\rightarrow \vec{x}_{i}$ is a dimension- N vector, $\vec{x}_{i}=$| 0 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | x_{i}-th coordinate

- \otimes denotes tensor product, e.g. $\vec{x}_{i} \otimes \vec{x}_{j}=$

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	0	$\mathbf{4}$	0	0

$\left(x_{i}, x_{j}\right)$-th coordinate

Idea I [CGKs95,Bıкк14]

Target $=f\left(x_{1}, \ldots, x_{k}\right)=\left\langle F, \vec{x}_{1} \otimes \cdots \otimes \vec{x}_{k}\right\rangle$

Recap 3-party PSM [BKN18]

The referee can compute $\left\langle F,\left(\vec{x}_{1}+\vec{r}_{1}\right) \otimes\left(\vec{x}_{2}+\vec{r}_{2}\right) \otimes\left(\vec{x}_{3}+\vec{r}_{3}\right)\right\rangle$

Idea I [CGкs95,Вікк14]

Target $=f\left(x_{1}, \ldots, x_{k}\right)=\left\langle F, \vec{x}_{1} \otimes \cdots \otimes \vec{x}_{k}\right\rangle$

Recap 3-party PSM [BKN18]
P_{i} sends OTP $\vec{x}_{i}+\vec{r}_{i}$.

target	has c.c. $O(N)$ in PSM model
$\left\langle F,\left(\vec{x}_{1}+\vec{r}_{1}\right) \otimes\left(\vec{x}_{2}+\vec{r}_{2}\right) \otimes\left(\vec{x}_{3}+\vec{r}_{3}\right)\right\rangle$$=\left\langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3}\right\rangle$	\downarrow
$+\left\langle P_{1}\right.$ knows, $\left.\vec{x}_{2}\right\rangle+\left\langle P_{1}\right.$ knows, $\left.\vec{x}_{3}\right\rangle+\left\langle P_{2}\right.$ knows, $\left.\vec{x}_{3}\right\rangle$	
$+\left\langle F, R_{1}\right.$ knows $\left.\vec{r}_{3}\right\rangle+\left\langle F, P_{2}\right.$ knows $\left.\vec{r}_{3}\right\rangle+\left\langle F, P_{3}\right.$ knows $\left.\vec{x}_{3}\right\rangle+\left\langle F, P_{1}\right.$ knows $\left.\vec{r}_{3}\right\rangle$	
deg-2 poly with $O(N)$ monomials (after local preprocessing)	

Idea II [IK97,BKN18]
Polynomials have complexity $O_{\text {degree }}(\#[$ monomials $]$) in PSM model

5-party PSM with communication $O\left(N^{2}\right)$

P_{i} sends OTP $\vec{x}_{i}+\vec{r}_{i}\left(\vec{r}_{i} \leftarrow\right.$ shared randomness).

$$
\left\langle F,\left(\vec{x}_{1}+\vec{r}_{1}\right) \otimes\left(\vec{x}_{2}+\vec{r}_{2}\right) \otimes\left(\vec{x}_{3}+\vec{r}_{3}\right) \otimes\left(\vec{x}_{4}+\vec{r}_{4}\right) \otimes\left(\vec{x}_{5}+\vec{r}_{5}\right)\right\rangle
$$

$=\left\langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3} \otimes \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle \longleftarrow \operatorname{target}$ hard to eliminate?
$+\left\langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3} \otimes \vec{x}_{4} \otimes \vec{r}_{5}\right\rangle+\left\langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3} \otimes \vec{r}_{4} \otimes \vec{x}_{5}\right\rangle+\left\langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{r}_{3} \otimes \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle+\left\langle F, \vec{x}_{1} \otimes \vec{r}_{2} \otimes \vec{x}_{3} \otimes \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle+\left\langle F, \vec{r}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3} \otimes \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle$

$$
\begin{aligned}
& +\left\langle\left\langle P_{11} \text { knows } \vec{x}_{3} \otimes \vec{x}_{3}\right\rangle\right\rangle+\left\langle\left\langle P_{11} \text { knows, } \vec{x}_{2} \otimes \vec{x}_{4}\right\rangle+\left\langle\left\langle P_{11} \text { knows, } \vec{x}_{3} \otimes \vec{x}_{4}\right\rangle+\left\langle\left\langle P_{2} \text { knows, } \vec{x}_{3} \otimes \vec{x}_{4}\right\rangle+\left\langle\left\langle P_{11} \text { knows, } \vec{x}_{2} \otimes \vec{x}_{5}\right\rangle\right.\right.\right.\right. \\
& +\left\langle\left\langle P_{11} \text { knows }, \vec{x}_{3} \otimes \vec{x}_{5}\right\rangle+\left\langle\left\langle P_{2} \text { knows, } \vec{x}_{3} \otimes \vec{x}_{5}\right\rangle+\left\langle\left\langle P_{11} \text { knows, } \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle+\left\langle\left\langle P_{2} \text { knows, } \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle+\left\langle\left\langle P_{3} \text { knows, } \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle\right\rangle\right.\right.\right.\right. \\
& \left.\left.+\left\langle F\left\langle P_{1} \text { knows }, \vec{x}_{2}\right\rangle_{5}\right\rangle+\left\langle F\left\langle P_{1} \text { knows }, \vec{x}_{3}\right\rangle_{5}\right\rangle+\left\langle F\left\langle P_{2} \text { knows }, \vec{x}_{3}\right\rangle\right\rangle_{5}\right\rangle+\left\langle F\left\langle P_{1} \text { knows, }, \vec{x}_{4}\right\rangle \nabla_{5}\right\rangle+\left\langle F\left\langle P_{2} \text { knows }, \vec{x}_{4}\right\rangle\right\rangle_{5}\right\rangle \\
& \left.\left.+\left\langle F\left\langle P_{3} \text { knows, }, \vec{x}_{4}\right\rangle \nabla_{5}\right\rangle+\left\langle F\left\langle\left\langle P_{1} \text { knows, } \vec{x}_{5}\right\rangle_{5}\right\rangle+\left\langle F\left\langle P_{2} \text { knows }, \overrightarrow{x_{5}}\right\rangle\right\rangle_{5}\right\rangle+\left\langle F\left\langle P_{3} \text { knows, } \vec{x}_{5}\right\rangle\right\rangle_{5}\right\rangle+\left\langle F\left\langle P_{4} \text { knows, } \vec{x}_{5}\right\rangle\right\rangle_{5}\right\rangle \\
& +\left\langle F, \bar{x}_{1} P_{12} \text { knows } \otimes \vec{F}_{5}\right\rangle+\left\langle F_{, ~ r_{1}} P_{2} \text { knows } \otimes \vec{r}_{5}\right\rangle+\left\langle F, \vec{r}_{1} P_{3} \text { knows } \otimes \vec{r}_{5}\right\rangle+\left\langle F_{, ~ r_{1}} P_{4} \text { knows } \otimes \vec{r}_{5}\right\rangle+\left\langle F_{, ~ \vec{r}_{1}} P_{5} \text { knows } \otimes \bar{x}_{5}\right\rangle \\
& +\left\langle\left(F_{1} \bar{r}_{1} P_{12} \text { knows } \otimes T_{5}\right\rangle\right) \text { deg-3 poly with } O\left(N^{2}\right) \text { monomials (after local preprocessing) }
\end{aligned}
$$

5-party PSM with communication $O\left(N^{2}\right)$

P_{i} sends OTP $\vec{x}_{i}+\vec{r}_{i}\left(\vec{r}_{i} \leftarrow\right.$ shared randomness $) . \longleftarrow$ communication $\ll N^{2}$

$$
\begin{aligned}
& \left\langle F,\left(\vec{x}_{1}+\vec{r}_{1}\right) \otimes\left(\vec{x}_{2}+\vec{r}_{2}\right) \otimes\left(\vec{x}_{3}+\vec{r}_{3}\right) \otimes\left(\vec{x}_{4}+\vec{r}_{4}\right) \otimes\left(\vec{x}_{5}+\vec{r}_{5}\right)\right\rangle \\
& =\left\langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3} \otimes \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle+\text { hard terms }+ \text { easy terms }
\end{aligned}
$$

P_{i}, P_{j} "jointly send" OTP $\vec{x}_{i} \otimes \vec{x}_{j}+R_{i, j}\left(R_{i, j} \leftarrow\right.$ shared randomness $)$.

$$
\begin{aligned}
& \left\langle F,\left(\vec{x}_{1} \otimes \vec{x}_{2}+R_{1,2}\right) \otimes\left(\vec{x}_{3}+\vec{r}_{3}\right) \otimes\left(\vec{x}_{4}+\vec{r}_{4}\right) \otimes\left(\vec{x}_{5}+\vec{r}_{5}\right)\right\rangle, \\
& \left\langle F,\left(\vec{x}_{1} \otimes \vec{x}_{2}+R_{1,2}\right) \otimes\left(\vec{x}_{3} \otimes \vec{x}_{4}+R_{3,4}\right) \otimes\left(\vec{x}_{5}+\vec{r}_{5}\right)\right\rangle, \\
& \left\langle F,\left(\vec{x}_{1} \otimes \vec{x}_{2}+R_{1,2}\right) \otimes\left(\vec{x}_{3}+\vec{r}_{3}\right) \otimes\left(\vec{x}_{4} \otimes \vec{x}_{5}+R_{4,5}\right)\right\rangle, \text { etc }
\end{aligned}
$$

Each of them $=\left\langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3} \otimes \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle+$ hard terms + easy terms

5-party PSM with communication $O\left(N^{2}\right)$

P_{i} sends OTP $\vec{x}_{i}+\vec{r}_{i}\left(\vec{r}_{i} \leftarrow\right.$ shared randomness).
P_{i}, P_{j} "jointly send" OTP $\vec{x}_{i} \otimes \vec{x}_{j}+R_{i, j}\left(R_{i, j} \leftarrow\right.$ shared randomness $)$.

$$
\begin{aligned}
& \left(\begin{array}{l}
-\left\langle F,\left(\vec{x}_{1} \otimes \vec{x}_{2}+R_{1,2}\right) \otimes\left(\vec{x}_{3}+\vec{r}_{3}\right) \otimes\left(\vec{x}_{4}+\vec{r}_{4}\right) \otimes\left(\vec{x}_{5}+\vec{r}_{5}\right)\right\rangle \\
+\left\langle F,\left(\vec{x}_{1} \otimes \vec{x}_{2}+R_{1,2}\right) \otimes\left(\vec{x}_{3} \otimes \vec{x}_{4}+R_{3,4}\right) \otimes\left(\vec{x}_{5}+\vec{r}_{5}\right)\right\rangle \\
+\left\langle F,\left(\vec{x}_{1} \otimes \vec{x}_{2}+R_{1,2}\right) \otimes\left(\vec{x}_{3} \otimes \vec{x}_{5}+R_{3,5}\right) \otimes\left(\vec{x}_{4}+\vec{r}_{4}\right)\right\rangle \\
+\left\langle F,\left(\vec{x}_{1} \otimes \vec{x}_{2}+R_{1,2}\right) \otimes\left(\vec{x}_{3}+\vec{r}_{3}\right) \otimes\left(\vec{x}_{4} \otimes \vec{x}_{5}+R_{4,5}\right)\right\rangle \\
\end{array} . \quad . \quad . \quad . \quad\right. \text { referee-computable } \\
& \begin{array}{ll}
= & \underset{\uparrow}{2} \times\left\langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3} \otimes \vec{x}_{4} \otimes \vec{x}_{5}\right\rangle \\
2 \neq 0 & \underbrace{\text { easy terms }}_{\text {target }} \\
\text { has c.c. } O\left(N^{2}\right)
\end{array} \\
& \text { in PSM model }
\end{aligned}
$$

Idea IV
Hard term cancellation (basic linear algebra)
k-party PSM with communication $O\left(N^{(k-1) / 2}\right)$
$\forall S \subseteq[k]$ that $|S| \leq \frac{k-1}{2}$, "jointly send" the OTP of $\otimes_{i \in S} \vec{x}_{i}$,
i.e. $\bigotimes_{i \in S} \vec{x}_{i}+R_{S}\left(R_{S} \leftarrow\right.$ shared randomness $)$.

Every referee-computable term = target + hard terms + easy terms

Do linear algebra to cancel out the hard terms:
a linear combination of referee-computable terms $=c \cdot$ target + easy terms

- Extra work to "use up the budget" when k is even. (next slide)
- Computer did the linear algebra when $k \leq 20$.
- We did the linear algebra for all $k=$ prime ${ }^{\text {power }}-1$.

Extra work when k is even

Idea I [CGKS95,BIKk14]
Target $=f\left(x_{1}, \ldots, x_{k}\right)=\left\langle F, \vec{x}_{1, H} \otimes \vec{x}_{1, L} \otimes \cdots \otimes \vec{x}_{k, H} \otimes \vec{x}_{k, L}\right\rangle$

$-\vec{x}_{i}$ is a dimension- N vector, $\vec{x}_{i}:=$| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

x_{i}-th coordinate

- Split $x_{i} \in[N]$ into $x_{i, H}, x_{i, L} \in[\sqrt{N}]$

- Then $\vec{x}_{i}=\vec{x}_{i, H} \otimes \vec{x}_{i, L}$ (flattened)

2-party PSM communication trade-off

Budget: one party sends $O\left(N^{\frac{b}{k}}\right)$ bits, the other party sends $O\left(N^{\frac{k-b}{k}}\right)$ bits

Idea III

Use up the communication budget!

2－party PSM communication trade－off

Budget：one party sends $O\left(N^{\frac{b}{k}}\right)$ bits，the other party sends $O\left(N^{\frac{k-b}{k}}\right)$ bits
－Use up the budget：
P_{1} sends the OTP of $\bigotimes_{i \in S} \vec{x}_{i}$ for every $S \subseteq[n]$ that $|S| \leq b$ P_{2} sends the OTP of $\bigotimes_{i \in T} \vec{y}_{i}$ for every $T \subseteq[n]$ that $|T| \leq k-b$
－Every referee－computable term $=$ target + hard terms + easy terms
－Do linear algebra：
c．c．\leq budget in PSM model
a linear combination of referee－computable terms $=$ target + easy terms
－Computer did the linear algebra when $0<b<k \leq 20$ ．

Our Results

k-party PSM with c.c. $O_{k}\left(N^{\frac{k-1}{2}}\right)$, for infinitely many k.
2-party PSM with c.c. $O\left(N^{\frac{d}{k}}\right), O\left(N^{\frac{k-d}{k}}\right)$, for any $0<d<k \leq 20$.
... generate more open questions than answers.

Our Conjectures Our frameworks work for any integer k.

Dependency on k Symmetry simplifies the analysis, but leads to exponential dependency on k.

Why it works? Beyond "the system of linear equations has a solution".
Why it doesn't work? E.g. 2-party PSM with c.c. $N^{10 / 21}$?
653 referee-computable terms, 139 hard terms, 0 solution.

Moon shot PSM with sub-exponential communication on $k \log N$.

