Multi-party PSM, Revisited:

Improved Communication and Unbalanced Communication

Tianren Liu¹ Léonard Assouline²

 1 University of Washington, Seattle \rightarrow Peking University, Beijing

²École Normale Supérieure, Paris

TCC 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 -

- Correctness: The referee learns $f(x_1, \ldots, x_k)$
- Security: Unbounded referee learns nothing else
- Communication complexity

Motivations

PSM is of theoretical interest

Minimal model of secure computation

Close connection to ...

- Ad-hoc PSM [BGIK16, BIK17]
- Conditional Disclosure of Secrets (CDS) [GIKM00,LVW18]
- Non-interactive MPC [BGIKMP14]
- (Decomposable) randomized encoding
- Information-theoretic GC [Yao86]
 ≈ PSM where each party has 1-bit input

How communication complexity depends on N, k (worst-case f) Can communication $\ll N^k$? e.g. CDS's communication $\approx 2^{\sqrt{k \log N}}$

How communication complexity depends on computation complexity (circuit size, branching program size, etc)

Previous Works and Our Results

	Communication for $f:[N]^k \to \{0,1\}$ in PSM model
[FKN94]	$O(N^{k-1})$ = all-but-one-party input space size
[BKN18]	$O_k(N^{k/2}) = \sqrt{ ext{total input space size}}$
[BIKK14]	$O(N^{1/2})$ for $k = 2$ = ????
[BKN18]	$O(N)$, $O(N^{5/3})$, $O(N^{7/3})$ for $k = 3, 4, 5$ resp. = ????
This work	$O_k(N^{\frac{k-1}{2}}) = \sqrt{\text{all-but-one-party input space size}}$
	- Yield BIKK and BKN as special cases when $k = 2$ or 3 - For infinitely many k , including all $k \le 20$

Previous Works and Our Results

Previous Works and Our Results (2-party)

	Communication for $f:[N] imes [N] o \{0,1\}$ in PSM model
[BIKK14]	$O(N^{1/2})$
[FKN94]	$O(N)$ for one party, $O(\log N)$ for the other
This work	${\it O}({\it N}^\eta)$ for one party, ${\it O}({\it N}^{1-\eta})$ for the other
	- Yield BIKK construction as a special case when $\eta=1/2$ - For rational $\eta\in(0,1)$ whose denominator ≤ 20

There are more questions than answers.

(will discuss them in the "open problem" section)

_ Idea I [сскs95,вікк14] _

Target =
$$f(x_1, \ldots, x_k) = \langle F, \vec{x}_1 \otimes \cdots \otimes \vec{x}_k \rangle$$

Notations:

 \triangleright $\langle \cdot, \cdot \rangle$ denotes the inner product F is the truth-table of f, which is a dimension- $(N \times \cdots \times N)$ array k times • \vec{x}_i is a dimension-N vector, $\vec{x}_i = \boxed{0 \ 0 \ 0 \ 0 \ 1}$ x_i-th coordinate ▶ ⊗ denotes tensor product, e.g. $\vec{x}_i \otimes \vec{x}_j =$ (x_i, x_i) -th coordinate

__ Idea I [сдкs95,Вікк14] -

$$\mathsf{Target} = f(x_1, \ldots, x_k) = \langle F, \vec{x}_1 \otimes \cdots \otimes \vec{x}_k \rangle$$

Recap 3-party PSM [BKN18]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

The referee can compute $\langle F, (\vec{x_1} + \vec{r_1}) \otimes (\vec{x_2} + \vec{r_2}) \otimes (\vec{x_3} + \vec{r_3}) \rangle$

_ Idea I [сдкs95,вікк14] _

$$\mathsf{Target} = f(x_1, \ldots, x_k) = \langle F, \vec{x}_1 \otimes \cdots \otimes \vec{x}_k \rangle$$

Recap 3-party PSM [BKN18]

 P_i sends OTP $\vec{x}_i + \vec{r}_i$.

- Idea II [ік97, вкм18]

Polynomials have complexity $O_{degree}(\#[monomials])$ in PSM model

5-party PSM with communication $O(N^2)$

 P_i sends OTP $\vec{x}_i + \vec{r}_i$ ($\vec{r}_i \leftarrow$ shared randomness).

 $\langle \mathsf{F}, (ec{x_1}+ec{r_1})\otimes(ec{x_2}+ec{r_2})\otimes(ec{x_3}+ec{r_3})\otimes(ec{x_4}+ec{r_4})\otimes(ec{x_5}+ec{r_5})
angle
angle$

 $= \langle F, \vec{x_1} \otimes \vec{x_2} \otimes \vec{x_3} \otimes \vec{x_4} \otimes \vec{x_5} \rangle \text{--target}$

hard to eliminate?

 $+\langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{r}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{r}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{r}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{r}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{r}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{r}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{r}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{r}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{r}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_3 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{x}_5 \otimes \vec{x}_5 \rangle + \langle F, \vec{x}_1 \otimes \vec{$

 $+ \langle P_{11} | \mathsf{knows}, \vec{x}_2 \otimes \vec{x}_3 \rangle + \langle P_{11} | \mathsf{knows}, \vec{x}_2 \otimes \vec{x}_4 \rangle + \langle P_{11} | \mathsf{knows}, \vec{x}_3 \otimes \vec{x}_4 \rangle + \langle P_{2} | \mathsf{knows}, \vec{x}_3 \otimes \vec{x}_4 \rangle + \langle P_{11} | \mathsf{knows}, \vec{x}_2 \otimes \vec{x}_5 \rangle$

 $+ \langle P_1 | \text{knows}, \vec{x}_3 \otimes \vec{x}_5 \rangle + \langle P_2 | \text{knows}, \vec{x}_3 \otimes \vec{x}_5 \rangle + \langle P_1 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_2 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_3 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_3 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_4 \otimes \vec{x}_5 \rangle + \langle P_4 | \text{knows}, \vec{x}_5 \rangle +$

 $+\langle F \langle P_1 \text{ knows}, \vec{x}_2 \rangle_{75} \rangle + \langle F \langle P_1 \text{ knows}, \vec{x}_3 \rangle_{75} \rangle + \langle F \langle P_2 \text{ knows}, \vec{x}_3 \rangle_{75} \rangle + \langle F \langle P_1 \text{ knows}, \vec{x}_4 \rangle_{75} \rangle + \langle F \langle P_2 \text{ knows}, \vec{x}_4 \rangle_{75} \rangle$

 $+\langle F \langle P_3 | knows, \vec{x}_4 \rangle_{7_5} \rangle + \langle F \langle P_1 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_2 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_3 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{7_5} \rangle + \langle F \langle P_4 | knows, \vec{x}_5 \rangle_{$

 $+\langle F,\vec{r_1} P_{\vec{1}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{2}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}2} \text{ knows } \otimes \vec{r_5} \rangle + \langle F,\vec{r_1} P_{\vec{3}$

 $+(F,r_1P_1, knows \otimes r_5)$ deg-3 poly with $O(N^2)$ monomials (after local preprocessing).

5-party PSM with communication $O(N^2)$

 P_i sends OTP $\vec{x}_i + \vec{r}_i$ ($\vec{r}_i \leftarrow$ shared randomness). \leftarrow communication $\ll N^2$

 $\left(\langle \mathcal{F}, (ec{x_1}+ec{r_1})\otimes(ec{x_2}+ec{r_2})\otimes(ec{x_3}+ec{r_3})\otimes(ec{x_4}+ec{r_4})\otimes(ec{x_5}+ec{r_5})
ight)
ight)$

 $= \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \left(\text{hard terms} \right) + \left(\text{easy terms} \right)$

 P_i, P_j "jointly send" OTP $\vec{x}_i \otimes \vec{x}_j + R_{i,j}$ ($R_{i,j} \leftarrow$ shared randomness).

$$\begin{array}{l} \langle F, (\vec{x}_1 \otimes \vec{x}_2 + R_{1,2}) \otimes (\vec{x}_3 + \vec{r}_3) \otimes (\vec{x}_4 + \vec{r}_4) \otimes (\vec{x}_5 + \vec{r}_5) \rangle \\ \langle F, (\vec{x}_1 \otimes \vec{x}_2 + R_{1,2}) \otimes (\vec{x}_3 \otimes \vec{x}_4 + R_{3,4}) \otimes (\vec{x}_5 + \vec{r}_5) \rangle \\ \langle F, (\vec{x}_1 \otimes \vec{x}_2 + R_{1,2}) \otimes (\vec{x}_3 + \vec{r}_3) \otimes (\vec{x}_4 \otimes \vec{x}_5 + R_{4,5}) \rangle \\ \rangle, \text{ etc} \\ \text{Each of them} = \langle F, \vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3 \otimes \vec{x}_4 \otimes \vec{x}_5 \rangle + \begin{array}{l} \text{hard terms} \\ \text{hard terms} \\ \end{pmatrix} + \begin{array}{l} \text{easy terms} \\ \end{array}$$

— Idea IV

Hard term cancellation (basic linear algebra)

5-party PSM with communication $O(N^2)$

 P_i sends OTP $\vec{x}_i + \vec{r}_i$ ($\vec{r}_i \leftarrow$ shared randomness).

 P_i, P_j "jointly send" OTP $\vec{x}_i \otimes \vec{x}_j + R_{i,j}$ ($R_{i,j} \leftarrow$ shared randomness).

$$\begin{pmatrix} -\langle F, (\vec{x}_{1} \otimes \vec{x}_{2} + R_{1,2}) \otimes (\vec{x}_{3} + \vec{r}_{3}) \otimes (\vec{x}_{4} + \vec{r}_{4}) \otimes (\vec{x}_{5} + \vec{r}_{5}) \rangle \\ + \langle F, (\vec{x}_{1} \otimes \vec{x}_{2} + R_{1,2}) \otimes (\vec{x}_{3} \otimes \vec{x}_{4} + R_{3,4}) \otimes (\vec{x}_{5} + \vec{r}_{5}) \rangle \\ + \langle F, (\vec{x}_{1} \otimes \vec{x}_{2} + R_{1,2}) \otimes (\vec{x}_{3} \otimes \vec{x}_{5} + R_{3,5}) \otimes (\vec{x}_{4} + \vec{r}_{4}) \rangle \\ + \langle F, (\vec{x}_{1} \otimes \vec{x}_{2} + R_{1,2}) \otimes (\vec{x}_{3} + \vec{r}_{3}) \otimes (\vec{x}_{4} \otimes \vec{x}_{5} + R_{4,5}) \rangle \\ = 2 \times \langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3} \otimes \vec{x}_{4} \otimes \vec{x}_{5} \rangle + \underbrace{\text{easy terms}}_{\text{has c.c. } O(N^{2})} \\ = 2 \times \langle F, \vec{x}_{1} \otimes \vec{x}_{2} \otimes \vec{x}_{3} \otimes \vec{x}_{4} \otimes \vec{x}_{5} \rangle + \underbrace{\text{easy terms}}_{\text{has c.c. } O(N^{2})} \\ = 1 \text{dea IV} \\ \text{Hard term cancellation (basic linear algebra)}$$

k-party PSM with communication $O(N^{(k-1)/2})$

$$\forall S \subseteq [k] \text{ that } |S| \leq \frac{k-1}{2}, \text{ "jointly send" the OTP of } \bigotimes_{i \in S} \vec{x_i}, \\ \text{ i.e. } \bigotimes_{i \in S} \vec{x_i} + R_S \text{ (} R_S \leftarrow \text{ shared randomness).}$$

Do linear algebra to cancel out the hard terms:

a linear combination of referee-computable terms $= c \cdot target + easy terms$

- Extra work to "use up the budget" when k is even. (next slide)
- Computer did the linear algebra when $k \leq 20$.
- We did the linear algebra for all $k = \text{prime}^{\text{power}} 1$.

Extra work when k is even

Idea I [сскs95,вікк14] _ Target = $f(x_1, ..., x_k) = \langle F, \vec{x}_{1,H} \otimes \vec{x}_{1,L} \otimes \cdots \otimes \vec{x}_{k,H} \otimes \vec{x}_{k,L} \rangle$ $\blacktriangleright \vec{x_i} \text{ is a dimension-} N \text{ vector, } \vec{x_i} := 0 0 0 0 1 0$ x_i-th coordinate ▶ Split $x_i \in [N]$ into $x_{i,H}, x_{i,L} \in [\sqrt{N}]$ ▶ Then $\vec{x}_i = \vec{x}_{i,H} \otimes \vec{x}_{i,L}$ (flattened)

2-party PSM communication trade-off

Budget: one party sends $O(N^{\frac{b}{k}})$ bits, the other party sends $O(N^{\frac{k-b}{k}})$ bits

— Idea III

Use up the communication budget!

2-party PSM communication trade-off

Budget: one party sends $O(N^{\frac{b}{k}})$ bits, the other party sends $O(N^{\frac{k-b}{k}})$ bits

▶ Use up the budget:

$$P_1$$
 sends the OTP of $\bigotimes_{i \in S} \vec{x}_i$ for every $S \subseteq [n]$ that $|S| \leq b$
 P_2 sends the OTP of $\bigotimes_{i \in T} \vec{y}_i$ for every $T \subseteq [n]$ that $|T| \leq k - b$

• Computer did the linear algebra when $0 < b < k \le 20$.

– Our Results

k-party PSM with c.c. $O_k(N^{\frac{k-1}{2}})$, for infinitely many *k*. 2-party PSM with c.c. $O(N^{\frac{d}{k}}), O(N^{\frac{k-d}{k}})$, for any $0 < d < k \le 20$.

... generate more **open questions** than answers.

Our Conjectures Our frameworks work for any integer k.

Dependency on k Symmetry simplifies the analysis, but leads to exponential dependency on k.

Why it works? Beyond "the system of linear equations has a solution".

Why it doesn't work? E.g. 2-party PSM with c.c. *N*^{10/21}? 653 referee-computable terms, 139 hard terms, 0 solution.

Moon shot PSM with sub-exponential communication on $k \log N$.