# Two-Round MPC without Round Collapsin<sup>Revisited</sup> Towards Efficient Malicious Protocols

# Rachel (Huijia) Lin<sup>1</sup> Tianren Liu<sup>2</sup>

<sup>1</sup>University of Washington, Seattle

<sup>2</sup>Peking University, Beijing

CRYPTO 2022

# Multi-Party Computation



Everyone learns  $f(x_1, \ldots, x_n)$ 

The adversary learns nothing else

#### Bottleneck

- Bandwidth Communication complexity
- Latency The number of round  $\geq 2$
- Runtime Computation complexity

| This   | Work |
|--------|------|
| 1 1110 |      |

- 2-round communication
- security w/ unanimous abort
- up to n-1 static corruptions
- ► GOAL: simplicity and efficiency
- black-box use of assumptions/field
- ▶ in correlated randomness model



widely used &  $\exists$  PseudorandomCG

assume PRG, RO and broadcast channel

 $\mathsf{NIZK} + \mathsf{semi-malicious} \text{ 2-round } \mathsf{MPC}$ 

Round collapsing [GGHR14,GP15,CGP15] assume iO [BL18,GS18,GIS18,BLPV18] malicious 2-round OT

MPC in the head [IKSS21]

# Asymptotic Complexity

|                        | communication complexity      | assumption                            |
|------------------------|-------------------------------|---------------------------------------|
| [GIS18,IKSS21]         | $ C  \cdot poly(\lambda, n)$  | 2-round OT                            |
| This work              | $O( C \cdot\lambda\cdot n^3)$ | 2-party correlated randomness         |
| Constant-round [WRK17] | $O( C \cdot\lambda\cdot n^2)$ | 2-party correlated randomness         |
| Many-round [SPDZ]      | $O( C \cdot\lambda\cdot n)$   | <i>n</i> -party correlated randomness |

# Main Ideas

Multi-Party Randomized Encoding [Applebaum-Brakerski-Tsabary]



Multi-Party Randomized Encoding [Applebaum-Brakerski-Tsabary]



Multi-Party Randomized Encoding [Applebaum-Brakerski-Tsabary]



honest-minority





To ensure  $a_1a_2 = b_1 + b_2$ To hide info when  $a_1a_2 \neq b_1 + b_2$ 

#### First attempt: if b want to hide info when $a_1a_2 \neq b_1 + b_2$ - b samples random r- let $\hat{f}$ output $r(a_1a_2 - b_1 - b_2) + info$ degree-3, cannot computed by $\hat{f}$



To ensure  $a_1a_2 = b_1 + b_2$ To hide info when  $a_1a_2 \neq b_1 + b_2$ 

Second attempt: if  $\bigcirc$  want to hide info when  $a_1a_2 \neq b_1 + b_2$ -  $\bigcirc$  samples random  $r_1, r_2$ - let  $\hat{f}$  output  $\begin{bmatrix} a_1 & b_1 + b_2 \\ 1 & a_2 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} + \begin{bmatrix} info \\ 0 \end{bmatrix}$ leak  $a_1, a_2$  if  $\bigcirc$  is corrupted



Replace scalar OLE CR by matrix OLE CR  $\vec{a}_1 \cdot \vec{a}_2^T = B_1 + B_2$ 

if  $\overleftrightarrow{a}$  want to hide info when  $\vec{a}_1 \cdot \vec{a}_2^T = B_1 + B_2$ -  $\overleftrightarrow{a}_1 \cdot \vec{a}_2^T \neq B_1 + B_2$   $\stackrel{\text{w.h.p.}}{\longleftrightarrow} \vec{v}_1^T \vec{a}_1 \cdot \vec{a}_2^T \vec{v}_2 \neq \vec{v}_1^T (B_1 + B_2) \vec{v}_2$  $\iff \begin{bmatrix} \vec{v}_1^T \vec{a}_1 & \vec{v}_1^T (B_1 + B_2) \vec{v}_2 \\ 1 & \vec{a}_2^T \vec{v}_2 \end{bmatrix}$  full-rank



Replace scalar OLE CR by matrix OLE CR  $\vec{a}_1 \cdot \vec{a}_2^T = B_1 + B_2$ 

if  $\bigcup$  want to hide info when  $\vec{a}_1 \cdot \vec{a}_2^T = B_1 + B_2$ -  $\mathcal{B}$  samples random  $\vec{v}_1, \vec{v}_2$ -  $\mathfrak{B}$  samples random  $r_1, r_2$ - let  $\hat{f}$  output  $\begin{bmatrix} \langle \vec{a}_1, \vec{v}_1 \rangle & \vec{v}_1^T (B_1 + B_2) \vec{v}_2 \\ 1 & \langle \vec{a}_1, \vec{v}_1 \rangle \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} + \begin{bmatrix} info \\ 0 \end{bmatrix}$  $\vec{v}_1^T (B_1 + B_2) \vec{v}_2 r_2$  is "degree-2" because  $\mathfrak{A}$  knows  $\vec{v}_1, \vec{v}_2, r_2$ leak  $\langle \vec{a}_1, \vec{v}_1 \rangle, \langle \vec{a}_2, \vec{v}_2 \rangle$  if B is corrupted

# Fix 2: enforce honest preprocessing



To enforce 🕙 honestly preprocess ....

... shirk the duty to the next slide.

Our MPRE is "semi-malicious"



#### **Observation:**

The 2-round MPC for degree-2  $\hat{f}$  in [LLW20] is "somewhat" maliciously secure.

In semi-honest setting, assume w.l.o.g.  $\hat{f} = x_1x_2 + z_1 + z_2$ 



is malicious secure

- a weaker notion of security
- can be lifted to security  $w/\ abort$

 $c_i$  is a commitment of  $x_i$ - simulate  $x_i = c_i - a_i$ 

Assume w.l.o.g. every coordinate of  $\hat{f}$  looks like  $x_1x_2 + z_1 + z_2$ 







Assume w.l.o.g. every coordinate of  $\hat{f}$  looks like  $x_1x_2 + z_1 + z_2$ 



matrix OLE correlated randomness  $\vec{a}_1 \vec{a}_2^T = B_1 + B_2$ 

 $\vec{c}_2$  allows partial (linear) opening









#### **Observation:**

The 2-round MPC for degree-2  $\hat{f}$  in [LLW20] is maliciously secure if output dim = 1.

Proof of **consistency** assumptions: matrix OLE CR & RO tech: linear opening, Fiat-Shamir

Proof of **well-formedness** assumptions: matrix OLE CR & RO tech: linear opening, Fiat-Shamir, linear proof

# 2-round malicious MPC for f



Semi-malicious MPRE for f

#### +

2-round MPC for  $\hat{f}$  that checks well-formedness

2-round MPC for f

11

- 2-round communication
- security w/ unanimous abort
- up to n-1 static corruptions
- ► GOAL: simplicity and efficiency
- black-box use of assumptions
- ▶ in correlated randomness model

- c.c.  $O(|C| \cdot \lambda \cdot n^3)$  for circuit
- statistical secure MPC for arithmetic branching program, w/ black-box field access
- ► computation complexity ≈ communication complexity



widely used &  $\exists$  PseudorandomCG

assume PRG, RO and broadcast channel

Thanks for listening!