Two-Round MPC without Round Collapsing Towards Efficient Malicious Protocols

Rachel (Huijia) Lin ${ }^{1}$ Tianren Liu ${ }^{2}$
${ }^{1}$ University of Washington, Seattle
${ }^{2}$ Peking University, Beijing

CRYPTO 2022

Multi-Party Computation

Everyone learns $f\left(x_{1}, \ldots, x_{n}\right)$
The adversary learns nothing else

Bottleneck

- Bandwidth - Communication complexity
- Latency - The number of round ≥ 2
- Runtime - Computation complexity
- 2-round communication
- security w/ unanimous abort
- up to $n-1$ static corruptions
- GOAL: simplicity and efficiency
- black-box use of assumptions/field
- in correlated randomness model

widely used \& \exists PseudorandomCG
- assume PRG, RO and broadcast channel

NIZK + semi-malicious 2-round MPC

Round collapsing

 [GGHR14,GP15, CGP15] assume iO[BL18,GS18,GIS18,BLPV18] malicious 2-round OT

MPC in the head [IKSS21]

Expansive assumptions $\quad \Longrightarrow$ inefficiency
Non-black-box use of the underlying assumptions
\Longrightarrow inefficiency
[GIS18,IKSS21] Expansive techniques
\Longrightarrow inefficiency

Asymptotic Complexity

	communication complexity	assumption
$[\mathrm{GIS18,IKSS} 21]$	$\|C\| \cdot \operatorname{poly}(\lambda, n)$	2-round OT
This work	$O\left(\|C\| \cdot \lambda \cdot n^{3}\right)$	2-party correlated randomness
Constant-round [WRK17]	$O\left(\|C\| \cdot \lambda \cdot n^{2}\right)$	2-party correlated randomness
Many-round [SPDZ]	$O(\|C\| \cdot \lambda \cdot n)$	n-party correlated randomness

Main Ideas

Multi-Party Randomized Encoding [Applebaum-Brakerski-Tsabary]

Multi-Party Randomized Encoding [Applebaum-Brakerski-Tsabary]

Multi-Party Randomized Encoding [Applebaum-Brakerski-Tsabary]

Fix 1: enforce using right correlated randomness

correlated randomness

2-round MPC computing degree-2 \hat{f}

To hide info when $a_{1} a_{2} \neq b_{1}+b_{2}$

First attempt:

if want to hide info when $a_{1} a_{2} \neq b_{1}+b_{2}$

- samples random r
- let \hat{f} output $\underbrace{r\left(a_{1} a_{2}\right.}-b_{1}-b_{2})+$ info degree-3, cannot computed by \hat{f}

Fix 1: enforce using right correlated randomness

correlated randomness

2-round MPC computing degree-2 \hat{f}

To hide info when $a_{1} a_{2} \neq b_{1}+b_{2}$

Second attempt:

if want to hide info when $a_{1} a_{2} \neq b_{1}+b_{2}$

- samples random r_{1}, r_{2}
- let \hat{f} output $\left[\begin{array}{cc}a_{1} & b_{1}+b_{2} \\ 1 & a_{2}\end{array}\right]\left[\begin{array}{l}r_{1} \\ r_{2}\end{array}\right]+\left[\begin{array}{c}\text { info } \\ 0\end{array}\right]$
leak a_{1}, a_{2} if is corrupted

Fix 1: enforce using right correlated randomness

correlated randomness

2-round MPC computing degree-2 \hat{f}

Replace scalar OLE CR by matrix OLE CR $\vec{a}_{1} \cdot \vec{a}_{2}^{T}=B_{1}+B_{2}$
if want to hide info when $\vec{a}_{1} \cdot \vec{a}_{2}^{T}=B_{1}+B_{2}$

- samples random \vec{v}_{1}, \vec{v}_{2}

$$
\vec{a}_{1} \cdot \vec{a}_{2}^{T} \neq B_{1}+B_{2}
$$

$$
\stackrel{\text { w.h.p. }}{\rightleftharpoons} \vec{v}_{1}^{T} \vec{a}_{1} \cdot \vec{a}_{2}^{T} \vec{v}_{2} \neq \vec{v}_{1}^{T}\left(B_{1}+B_{2}\right) \vec{v}_{2}
$$

$$
\Longleftrightarrow\left[\begin{array}{cc}
\vec{v}_{1}^{T} \vec{a}_{1} & \vec{v}_{1}^{T}\left(B_{1}+B_{2}\right) \vec{v}_{2} \\
1 & \vec{a}_{2}^{T} \vec{v}_{2}
\end{array}\right] \text { full-rank }
$$

Fix 1: enforce using right correlated randomness

correlated randomness

2-round MPC computing degree-2 \hat{f}

Replace scalar OLE CR by matrix OLE CR $\vec{a}_{1} \cdot \vec{a}_{2}^{T}=B_{1}+B_{2}$
if want to hide info when $\vec{a}_{1} \cdot \vec{a}_{2}^{T}=B_{1}+B_{2}$

- samples random \vec{v}_{1}, \vec{v}_{2}
- samples random r_{1}, r_{2}
- let \hat{f} output

$$
\left[\begin{array}{cc}
\left\langle\vec{a}_{1}, \vec{v}_{1}\right\rangle & \vec{v}_{1}^{T}\left(B_{1}+B_{2}\right) \vec{v}_{2} \\
1 & \left\langle\vec{a}_{1}, \vec{v}_{1}\right\rangle
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]+\left[\begin{array}{c}
i n f o \\
0
\end{array}\right]
$$

$\vec{v}_{1}^{T}\left(B_{1}+B_{2}\right) \vec{v}_{2} r_{2}$ is "degree-2"
because knows $\vec{v}_{1}, \vec{v}_{2}, r_{2}$
leak $\left\langle\vec{a}_{1}, \vec{v}_{1}\right\rangle,\left\langle\vec{a}_{2}, \vec{v}_{2}\right\rangle$ if $\vec{e}_{\text {en }}$ is corrupted

Fix 2: enforce honest preprocessing

OLE
correlated randomness

2-round MPC computing degree-2 \hat{f} \& enforcing input well-formedness

To enforce honestly preprocess...
... shirk the duty to the next slide.

Our MPRE is "semi-malicious"

Fix 3: malicious MPC for degree- $2 \hat{f}$

Observation:

The 2-round MPC for degree-2 \hat{f} in [LLW20] is "somewhat" maliciously secure.

Fix 3: malicious MPC for degree- $2 \hat{f}$

In semi-honest setting, assume w.l.o.g. $\hat{f}=x_{1} x_{2}+z_{1}+z_{2}$

round 1	broadcast $c_{1}=a_{1}+x_{1}$	broadcast $c_{2}=a_{2}+x_{2}$
round 2	broadcast $m_{1}=x_{1} c_{2}+b_{1}+z_{1}$	broadcast $m_{2}=x_{2} c_{1}+b_{2}+z_{2}$
output	(which equal	$\begin{aligned} & -c_{1} c_{2} \\ & \left.x_{2}+z_{1}+z_{2}\right) \end{aligned}$

is malicious secure

- a weaker notion of security - can be lifted to security w/ abort
c_{i} is a commitment of x_{i}
- simulate $x_{i}=c_{i}-a_{i}$

Fix 3: malicious MPC for degree- $2 \hat{f}$
Assume w.l.o.g. every coordinate of \hat{f} looks like $x_{1} x_{2}+z_{1}+z_{2}$

$\left.\begin{array}{c:cc:cc|} & & & \\ \text { round 1 } & c_{1}=a_{1}+x_{1} & c_{2}=a_{2}+x_{2} & c_{2}^{\prime}=a_{2}^{\prime}+x_{2} & \text { broadcast } \\ \text { round 2 } & \text { broadcast } & m_{1}=x_{1} c_{2}+b_{1}+z_{1} & m_{2}=x_{2} c_{1}+b_{2}+z_{2} & m_{2}^{\prime}=x_{2} c_{3}+b_{2}^{\prime}+z_{2}\end{array} m_{3}=x_{3} c_{2}+b_{3}+z_{3}\right)$

Fix 3: malicious MPC for degree- $2 \hat{f}$

Assume w.l.o.g. every coordinate of \hat{f} looks like $x_{1} x_{2}+z_{1}+z_{2}$

round 1	broadcast $c_{1}=a_{1}+x_{1}$	$\begin{array}{c:c} \text { broadcast } & \text { broadcast } \\ c_{2}=a_{2}+x_{2} & c_{2}^{\prime}=a_{2}^{\prime}+x_{2} \end{array}$	broadcast $c_{3}=a_{3}+x_{3}$
		$\begin{array}{c:c} \text { simulate } & \text { simulate } \\ x_{2}=c_{2}-a_{2} & x_{2}=c_{2}^{\prime}-a_{2}^{\prime} \\ \text { Need: proof } & \\ \text { ©f consistency } \end{array}$	

Fix 3: malicious MPC for degree- $2 \hat{f}$

Assume w.l.o.g. every coordinate of \hat{f} looks like $x_{1} x_{2}+z_{1}+z_{2}$

round 1	broadcast $\vec{c}_{2}=\vec{a}_{2}+\left(x_{2}, \text { tail }\right)$
round 2	
round 3	open $\left\langle\vec{q},\left(x_{2}, \text { tail }\right)\right\rangle$

matrix OLE correlated randomness $\vec{a}_{1} \vec{a}_{2}^{T}=B_{1}+B_{2}$
\vec{c}_{2} allows partial (linear) opening

Fix 3: malicious MPC for degree- $2 \hat{f}$

Assume w.l.o.g. every coordinate of \hat{f} looks like $x_{1} x_{2}+z_{1}+z_{2}$

round 1	broadcast $\vec{c}_{2}=\vec{a}_{2}+\left(x_{2}, \text { tail }\right)$	broadcast $\vec{c}_{2}^{\prime}=\vec{a}_{2}^{\prime}+\left(x_{2}, \text { tail }\right)$
round 2	broadcast random \vec{q}	broadcast random \vec{q}^{\prime}
round 3	open $\left\langle\vec{q},\left(x_{2}, \text { tail }\right)\right\rangle,\left\langle\vec{q}^{\prime},\left(x_{2}, \text { tail }\right)\right\rangle$	$\begin{gathered} \text { open } \\ \left\langle\vec{q},\left(x_{2}, \text { tail }\right)\right\rangle,\left\langle\vec{q}^{\prime},\left(x_{2}, \text { tail }\right)\right\rangle \end{gathered}$

Fix 3: malicious MPC for degree- $2 \hat{f}$

Assume w.l.o.g. every coordinate of \hat{f} looks like $x_{1} x_{2}+z_{1}+z_{2}$

Fix 3: malicious MPC for degree- $2 \hat{f}$

Observation:

The 2-round MPC for degree-2 \hat{f} in [LLW20] is maliciously secure if output $\operatorname{dim}=1$.

Proof of consistency assumptions: matrix OLE CR \& RO tech: linear opening, Fiat-Shamir

Proof of well-formedness

 assumptions: matrix OLE CR \& RO tech: linear opening, Fiat-Shamir, linear proof
2-round malicious MPC for f

correlated randomness

2-round MPC computing degree- $2 \hat{f}$ \& enforcing input well-formedness

Semi-malicious MPRE for f
$+$

2-round MPC for \hat{f} that checks well-formedness

2-round MPC for f

- 2-round communication
- security w/ unanimous abort
- up to $n-1$ static corruptions
- GOAL: simplicity and efficiency
- black-box use of assumptions
- in correlated randomness model

widely used \& \exists PseudorandomCG
- assume PRG, RO and broadcast channel
- c.c. $O\left(|C| \cdot \lambda \cdot n^{3}\right)$ for circuit
- statistical secure MPC for arithmetic branching program, w/ black-box field access
- computation complexity \approx communication complexity

Thanks for listening!

