The t-wise Independence of Substitution-Permutation Networks

Tianren Liu ${ }^{1}$ Stefano Tessaro ${ }^{1}$ Vinod Vaikuntanathan ${ }^{2}$
${ }^{1}$ University of Washington, Seattle
${ }^{2}$ MIT, Cambridge
CRYPTO 2021

Random-looking Keyed Permutation

indistinguishable from a random permutation

Random-looking Keyed Permutation

 indistinguishable from a random permutation
theory
Pseudorandom Permutation
Provable security
based on hardness assumptions
practice
Block Cipher
Heuristic security resisting known attacks

theory
 Pseudorandom Permutation

provable security based on ...
Feistel [LR88] plus

- one-way functions [GGM84]
- factoring [NR04, . .]
- lattice problems [BPR12,...]

theory
 Pseudorandom Permutation

Block Cipher

provable security based on
Feistel [LR88] plus

- one-way functions [GGM84]
- factoring [NR04,...]
- lattice problems [BPR12,...]
very efficient ciphers (e.g. AES)

theory
 Pseudorandom Permutation

provable security based on
Feistel [LR88] plus

- one-way functions [GGM84]
- factoring [NR04,...]
- lattice problems [BPR12,...]

Block Cipher

very efficient ciphers (e.g. AES)

Is AES secure?

theory
 Pseudorandom Permutation

provable security based on
Feistel［LR88］plus
－one－way functions［GGM84］
－factoring［NR04，．．］
－lattice problems［BPR12，．．．］

Base AES on assumptions？

practice

Block Cipher

very efficient ciphers（e．g．AES）

theory
 Pseudorandom Permutation

provable security based on
Feistel [LR88] plus

- one-way functions [GGM84]
- factoring [NR04, . .]
- lattice problems [BPR12,...]

Base AES on assumptions?

Idealized model
BKL+12, Ste12, ABD+13, LS14, CS14, CLL+14, HT16, DSSL16, GL15, DKS+17, CDK +18, CL18, WYCD20, etc

practice

Block Cipher

very efficient ciphers (e.g. AES)

theory
 Pseudorandom Permutation

provable security based on
Feistel [LR88] plus

- one-way functions [GGM84]
- factoring [NR04, . .]
- lattice problems [BPR12,...]

Base AES on assumptions?

```
Idealized model
BKL+12, Ste12, ABD+13, LS14, CS14, CLL+14, HT16, DSSL16, GL15, DKS+17, CDK +18, CL18, WYCD20, etc
Idealized model
```

[^0]very efficient ciphers (e.g. AES)

Cryptanalysis

linear [MY92] and differential [BS91] cryptanalysis, higher-order [Lai94] and truncated [Knu94] differential attacks, impossible differential attacks [Knu98], algebraic attacks [JK97], integral cryptanalysis [KW02], biclique attacks [BKR11], etc

practice
 \section*{Block Cipher}

theory
 Pseudorandom Permutation

provable security based on
Feistel [LR88] plus

- one-way functions [GGM84]
- factoring [NR04, . .]
- lattice problems [BPR12,...]

Base AES on assumptions?

Idealized model
BKL+12, Ste12, ABD+13, LS14, CS14, CLL+14, HT16, DSSL16, GL15, DKS+17, CDK +18, CL18, WYCD20, etc

Block Cipher

very efficient ciphers (e.g. AES)

Cryptanalysis

linear [MY92] and differential [BS91] cryptanalysis, higher-order [Lai94] and truncated [Knu94] differential attacks, impossible differential attacks [Knu98], algebraic attacks [JK97], integral cryptanalysis [KW02], biclique attacks [BKR11], etc

Provable bounds

on the advantage of known attacks
NK95, KMT01, PSC+02, PSLL03, Kel04, KS07, etc

Prove bounds against an attack class

integral cryptanalysis	algebraic truncated higher-order differential attacks	higher-order differential attacks
biclique		
attacks	differential attacks	
impossible differential attacks	linear	
attacks		

Prove bounds against an attack class

This paper: t-wise independence

This paper: t-wise independence

This paper: t-wise independence

t-wise Independence

\forall input $_{1}, \ldots$, input $_{t}$ output $_{1}, \ldots$, output ${ }_{t}$ are i.i.d. uniform

used in [HMMR05, KNR05, BH08, AL13]

ε-close to t-wise Independence

```
    \forallinput 
StatisticalDistance((\mp@subsup{output }{1}{},\ldots,\mp@subsup{\mathrm{ output }}{t}{}),\mathrm{ uniform) }\leq\varepsilon
```

used in [HMMR05, KNR05, BH08, AL13]

ε-close to t-wise Independence

```
    \forallinput 
StatisticalDistance((\mp@subsup{output }{1}{},\ldots,\mp@subsup{\mathrm{ output }}{t}{}),\mathrm{ uniform) }\leq\varepsilon
```

Feasible when \mid key $\mid \geq t \cdot n$

ε-close to t-wise Independence

$$
\begin{gathered}
\forall \text { input }_{1}, \ldots, \text { input }_{t} \\
\text { StatisticalDistance }\left(\left(\text { output }_{1}, \ldots, \text { output }_{t}\right), \text { uniform }\right) \leq \varepsilon
\end{gathered}
$$

Feasible when \mid key $\mid \geq t \cdot n \quad$ e.g. assume independent round keys

ε-close to t-wise Independence

```
    \forallinput 
StatisticalDistance((\mp@subsup{output }{1}{},\ldots,\mp@subsup{\mathrm{ output }}{t}{}),\mathrm{ uniform) }\leq\varepsilon
```

Feasible when \mid key $\mid \geq t \cdot n \quad$ e.g. assume independent round keys
Statistically indistinguishable with t non-adaptive queries

ε-close to t-wise Independence

```
    \forallinput 
StatisticalDistance((\mp@subsup{output }{1}{},\ldots,\mp@subsup{\mathrm{ output }}{t}{}),\mathrm{ uniform) }\leq\varepsilon
```

Feasible when \mid key $\mid \geq t \cdot n \quad$ e.g. assume independent round keys
Statistically indistinguishable with t non-adaptive queries

- 2 non-adaptive queries linear \& differential attacks

ε-close to t-wise Independence

$$
\begin{gathered}
\forall \text { input }_{1}, \ldots, \text { input }_{t} \\
\text { StatisticalDistance }\left(\left(\text { output }_{1}, \ldots, \text { output }_{t}\right), \text { uniform }\right) \leq \varepsilon
\end{gathered}
$$

Feasible when \mid key $\mid \geq t \cdot n \quad$ e.g. assume independent round keys
Statistically indistinguishable with t non-adaptive queries

- 2 non-adaptive queries linear \& differential attacks
-2^{d} non-adaptive queries order- d differential attacks

ε－close to t－wise Independence

```
    \forallinput 
StatisticalDistance((\mp@subsup{\mathrm{ output }}{1}{},\ldots,\mp@subsup{\mathrm{ output }}{t}{}),\mathrm{ uniform )}\leq\varepsilon
```

Feasible when \mid key $\mid \geq t \cdot n \quad$ e．g．assume independent round keys
Statistically indistinguishable with t non－adaptive queries

$$
\varepsilon \text {-close to 2-wise indp } \Longrightarrow \begin{cases}\text { MEDP } \leq \varepsilon+\frac{1}{2^{n}-1} & \text { (differential attack) } \\ \operatorname{CORR} \leq 8 \varepsilon+\frac{4}{2^{n}} & \text { (linear attack) }\end{cases}
$$

Key-Alternating Cipher (KAC)

Substitution-Permutation Network (SPN) Advanced Encryption Standard (AES)

Key-Alternating Cipher (KAC)

Substitution-Permutation Network (SPN) Advanced Encryption Standard (AES)

Key-Alternating Cipher (KAC)

Substitution-Permutation Network (SPN)
Advanced Encryption Standard (AES)

Substitution-Permutation Network (SPN) Advanced Encryption Standard (AES)

Substitution-Permutation Network (SPN) Advanced Encryption Standard (AES)

Substitution-Permutation Network (SPN) Advanced Encryption Standard (AES)

Substitution-Permutation Network (SPN) Advanced Encryption Standard (AES)

Substitution-Permutation Network (SPN) Advanced Encryption Standard (AES)

Substitution-Pérmutation Network (SPN)
Advanced Encryption Standard (AES)

Substitution-Pérmutation Network (SPN)
Advanced Encryption Standard (AES)

r-round $\operatorname{KAC}\left(\pi_{1}, \ldots, \pi_{r}\right)$ is not $(r+2)$-wise independent

Our Results (KAC)
r-round $\operatorname{KAC}\left(\pi_{1}, \ldots, \pi_{r}\right)$ is close to $(r-o(r))$-wise independent for most π_{1}, \ldots, π_{r}

Our Results（KAC）
r－round $\operatorname{KAC}\left(\pi_{1}, \ldots, \pi_{r}\right)$ is close to （ $r-o(r)$ ）－wise independent for most π_{1}, \ldots, π_{r}
＊existential result \＆probabilistic method

Our Results (KAC)

r-round $\operatorname{KAC}\left(\pi_{1}, \ldots, \pi_{r}\right)$ is close to ($r-o(r)$)-wise independent for most π_{1}, \ldots, π_{r}
*existential result \& probabilistic method
*unlike ideal model results, π_{1}, \ldots, π_{r} are completely known to adv

Our Results

2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent.
3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.

Our Results

2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent.
3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.
6 -round AES is 0.472 -close to 2 -wise independent.

Our Results (SPN \& AES)

2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent.
3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.
6 -round AES is 0.472 -close to 2 -wise independent.

Our Results (SPN \& AES)

2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent.
3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.
6 -round AES is 0.472 -close to 2 -wise independent.

State of the art [Park-Sung-Lee-Lim 03]
4 -round AES is pointwise 2^{17}-close to 2 -wise independent.

Our Results (SPN \& AES)

2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent.
3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.
6 -round AES is 0.472 -close to 2 -wise independent.

State of the art [Park-Sung-Lee-Lim 03]
4 -round AES is pointwise 2^{17}-close to 2 -wise independent.

$$
\begin{aligned}
& \text { def pointwise } \varepsilon \text {-close to uniform } \\
& 1-\varepsilon \leq \frac{\operatorname{Pr}[X \leftarrow \text { distribution } ; X=v]}{\operatorname{Pr}[X \leftarrow \text { uniform } ; X=v]} \leq 1+\varepsilon
\end{aligned}
$$

Our Results (SPN \& AES)

2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent.
3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.
6 -round AES is 0.472 -close to 2 -wise independent.

MPR Amplification Lemma [Maurer-Pietrzak-Renner 07]
$\left.\begin{array}{l}\mathcal{F} \text { is } \varepsilon \text {-close to } 2 \text {-wise indp. } \\ \mathcal{G} \text { is } \delta \text {-close to } 2 \text {-wise indp. }\end{array}\right\} \Longrightarrow \mathcal{F} \circ \mathcal{G}$ is $2 \varepsilon \delta$-close to 2 -wise indp.

Our Results (SPN \& AES)

2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent.
3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.
6 -round AES is 0.472 -close to 2 -wise independent.

MPR Amplification Lemma [Maurer-Pietrzak-Renner 07]
$\left.\begin{array}{l}\mathcal{F} \text { is } \varepsilon \text {-close to } 2 \text {-wise indp. } \\ \mathcal{G} \text { is } \delta \text {-close to } 2 \text {-wise indp. }\end{array}\right\} \Longrightarrow \mathcal{F} \circ \mathcal{G}$ is $2 \varepsilon \delta$-close to 2 -wise indp.

Amplifying Our Results
$6 r$-round AES is $\left(2^{r-1} 0.472^{r}\right)$-close to 2 -wise independent.

Proof Overview (KAC)

Our Results (KAC)
r-round $\operatorname{KAC}\left(\pi_{1}, \ldots, \pi_{r}\right)$ is close to $(r-o(r))$-wise independent for most π_{1}, \ldots, π_{r}

Proof Overview (KAC)

Our Results (KAC)
r-round $\operatorname{KAC}\left(\pi_{1}, \ldots, \pi_{r}\right)$ is close to $(r-o(r))$-wise independent for most π_{1}, \ldots, π_{r}

Proof Overview (KAC)

\mathcal{F} is t-wise indp.

Proof Overview (KAC)

\mathcal{F} is t-wise indp.

Proof Overview (KAC)

Proof Overview (KAC)

Independence Amplification Lemma
\mathcal{F} is t-wise indp.

*existential result \& probabilistic method on π

Proof Overview (KAC)

Independence Amplification Lemma
\mathcal{F} is t-wise indp.

pointwise ε-close to t-wise independence

$$
\begin{aligned}
& \forall \text { input }_{1}, \ldots, \text { input }_{t}, \text { output }_{1}, \ldots, \text { output }_{t} \\
& \qquad \frac{1-\varepsilon}{2^{\text {tn }}} \leq \operatorname{Pr}\left[\text { output }_{1}, \ldots, \text { output }_{t}\right] \leq \frac{1+\varepsilon}{2^{\text {tn }}}
\end{aligned}
$$

Proof Overview (KAC)

Independence Amplification Lemma
\mathcal{F} is t-wise indp.

pointwise ε-close to t-wise independence

$$
\begin{aligned}
& \text { input }_{1}, \ldots, \text { input }_{t}, \text { output }_{1}, \ldots, \text { output }_{t} \\
& \qquad \frac{1-\varepsilon}{2^{\text {tn }}} \leq \operatorname{Pr}\left[\text { output }_{1}, \ldots, \text { output }_{t}\right] \leq \frac{1+\varepsilon}{2^{\text {tn }}}
\end{aligned}
$$

$$
\text { *meaningful even if } \varepsilon \gg 1
$$

Proof Overview (KAC)

Independence Amplification Lemma
\mathcal{F} is pointwise
ε-close to t-wise indp.

pointwise ε-close to t-wise independence

$$
\text { input }_{1}, \ldots, \text { input }_{t}, \text { output }_{1}, \ldots, \text { output }_{t}
$$

$$
\frac{1-\varepsilon}{2^{t n}} \leq \operatorname{Pr}\left[\text { output }_{1}, \ldots, \text { output }_{t}\right] \leq \frac{1+\varepsilon}{2^{t n}}
$$

$$
\text { *meaningful even if } \varepsilon \gg 1
$$

Proof Overview (KAC)

Independence Amplification Lemma

0 -round KAC (=one-time pad) is 1 -wise indp.

Proof Overview (KAC)

Independence Amplification Lemma

0 -round KAC (=one-time pad) is 1-wise indp.
\Downarrow
1 -round KAC is pointwise $O(n)$-close to 2 -wise indp.

Proof Overview（KAC）

Independence Amplification Lemma

0 －round KAC（＝one－time pad）is 1－wise indp．
\Downarrow
1－round KAC is pointwise $O(n)$－close to 2－wise indp．
\Downarrow
2－round KAC is pointwise $O\left(n^{2}\right)$－close to 3 －wise indp．

Proof Overview (KAC)

Independence Amplification Lemma
\mathcal{F} is pointwise
ε-close to t-wise indp.

0 -round KAC (=one-time pad) is 1-wise indp.
\Downarrow
1-round KAC is pointwise $O(n)$-close to 2-wise indp.
\Downarrow
2-round KAC is pointwise $O\left(n^{2}\right)$-close to 3 -wise indp. r-round KAC is pointwise $n^{r} r^{O(r)}$-close to $(r+1)$-wise indp.

Proof Overview (KAC)

Independence Amplification Lemma

\mathcal{F} is pointwise
ε-close to t-wise indp.

is pointwise $O\left((1+\varepsilon) t^{2} n\right)$-close to $(t+1)$-wise indp.

Distance Amplification Lemma

\mathcal{F} is
pointwise very close to t-wise indp. \& pointwise somewhat close to $(t+1)$-wise indp.

is pointwise very close to $(t+1)$-wise indp.

Proof Overview (KAC)

Independence Amplification Lemma

\mathcal{F} is pointwise
ε-close to t-wise indp.

is pointwise $O\left((1+\varepsilon) t^{2} n\right)$-close to $(t+1)$-wise indp.

Distance Amplification Lemma

\mathcal{F} is
pointwise ε-close to t-wise indp. \& pointwise ε^{\prime}-close to $(t+1)$-wise indp.

is pointwise $\left(\varepsilon+\frac{O\left(\varepsilon^{\prime} t\right)}{2^{n / 3}}\right)$-close to $(t+1)$-wise indp.

Proof Overview (KAC)

number of rounds	0 -round	1-round	2-round	3-round
closeness to				
1-wise indp.				
closeness to				
2-wise indp.				
closeness to				
3-wise indp.				
closeness to				
4-wise indp.				
closeness to				

Proof Overview (KAC)

number of rounds	0-round	1-round	2-round	3-round	4-round
closeness to					
1-wise indp.	0	0	0	0	0
closeness to					
2-wise indp.					
closeness to					
3-wise indp.					
closeness to					
4-wise indp.					
closeness to					

Proof Overview (KAC)

number of rounds	0-round	1-round	2-round	3-round	4-round
closeness to 1-wise indp.	0	0	0	0	0
closeness to 2-wise indp.		$O(n)$			
closeness to 3-wise indp.					
closeness to 4-wise indp.					
closeness to 5-wise indp.					

Independence
Amplification

Proof Overview (KAC)

number of rounds	0-round	1-round	2-round	3 -round	4-round
closeness to 1-wise indp.					
closeness to					
2-wise indp.					
closeness to	$O\left(n^{2}\right) \quad O\left(\frac{n^{2}}{2^{n / 3}}\right) \quad O\left(\frac{n^{2}}{2^{2 n / 3}}\right)$				
3 -wise indp.					
closeness to	$O\left(n^{3}\right) \quad O\left(\frac{n^{3}}{2^{n / 3}}\right)$				
4 -wise indp.					
closeness to 5-wise indp.	$O\left(n^{4}\right)$				
Independence					
Amplification Amplification					

Proof Overview (SPN \& AES)

Our Results (SPN \& AES)
2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent.
3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.
6 -round AES is 0.472 -close to 2 -wise independent.

Proof Overview (SPN \& AES)

Only the difference matters

Proof Overview (SPN \& AES)

Only the difference matters

Only the difference matters

$\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ is random conditioning on $x_{1}^{\prime}-x_{2}^{\prime}=x_{1}-x_{2}$

Only the difference matters

$\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ is random conditioning on $x_{1}^{\prime}-x_{2}^{\prime}=x_{1}-x_{2}$

$$
\mathrm{SD}\left(\left(y_{1}, y_{2}\right) \text {, uniform }\right)=\mathrm{SD}\left(y_{1}^{\prime}-y_{2}^{\prime}, \text { uniform }\right)
$$

Proof Overview (SPN \& AES)

S-box: input difference $\delta \mapsto$ output difference δ^{\prime}

Proof Overview (SPN \& AES)

S-box: input difference $\delta \quad \mapsto$ output difference δ^{\prime}

Proof Overview (SPN \& AES)

S-box: input difference $\delta \mapsto$ output difference δ^{\prime}

Proof Overview (SPN \& AES)

S-box: input difference $\delta \mapsto$ output difference δ^{\prime}

$$
S(x)=x^{-1} \quad \text { or } \quad S(x)=x^{3} \quad \text { over } \mathbb{F}_{2^{b}}
$$

Subspace Sampling Lemma

> View δ, δ^{\prime} as dimension- n vectors in \mathbb{F}_{2}^{b} δ^{\prime} is a random vector orthogonal to δ !

Proof Overview（SPN \＆AES）

S－box：input difference $\delta \mapsto$ output difference δ^{\prime}

$$
S(x)=x^{-1} \quad \text { or } \quad S(x)=x^{3} \quad \text { over } \mathbb{F}_{2^{b}}
$$

Subspace Sampling Lemma

> View δ, δ^{\prime} as dimension- n vectors in \mathbb{F}_{2}^{b} δ^{\prime} is a random vector orthogonal to δ !

Proof Overview（SPN \＆AES）

S－box：input difference $\delta \mapsto$ output difference δ^{\prime}

$$
S(x)=x^{-1} \quad \text { or } \quad S(x)=x^{3} \quad \text { over } \mathbb{F}_{2^{b}}
$$

Subspace Sampling Lemma

> View δ, δ^{\prime} as dimension- n vectors in \mathbb{F}_{2}^{b} δ^{\prime} is a random vector orthogonal to $\delta!$

Not really true．Actually

Proof Overview（SPN \＆AES）

S－box：input difference $\delta \mapsto$ output difference δ^{\prime}

$$
S(x)=x^{-1} \quad \text { or } \quad S(x)=x^{3} \quad \text { over } \mathbb{F}_{2^{b}}
$$

Subspace Sampling Lemma

> View δ, δ^{\prime} as dimension- n vectors in \mathbb{F}_{2}^{b} δ^{\prime} is a random vector orthogonal to δ !

Not really true．Actually
－$\delta=0 \Longrightarrow \delta^{\prime}=0$

Proof Overview（SPN \＆AES）

S－box：input difference $\delta \mapsto$ output difference δ^{\prime}

$$
S(x)=x^{-1} \quad \text { or } \quad S(x)=x^{3} \quad \text { over } \mathbb{F}_{2^{b}}
$$

Subspace Sampling Lemma

> View δ, δ^{\prime} as dimension- n vectors in \mathbb{F}_{2}^{b} δ^{\prime} is a random vector orthogonal to δ !

Not really true．Actually
－$\delta=0 \Longrightarrow \delta^{\prime}=0$
－$\exists \pi, \pi^{\prime}$ s．t．$\pi\left(\delta^{\prime}\right)$ is a random vector orthogonal to $\pi^{\prime}(\delta)$

Proof Overview（SPN \＆AES）

S－box：input difference $\delta \mapsto$ output difference δ^{\prime}

$$
S(x)=x^{-1} \quad \text { or } \quad S(x)=x^{3} \quad \text { over } \mathbb{F}_{2^{b}}
$$

Subspace Sampling Lemma

> View δ, δ^{\prime} as dimension- n vectors in \mathbb{F}_{2}^{b} δ^{\prime} is a random vector orthogonal to δ !

Not really true．Actually
－$\delta=0 \Longrightarrow \delta^{\prime}=0$
－$\exists \pi, \pi^{\prime}$ s．t．$\pi\left(\delta^{\prime}\right)$ is a random vector orthogonal to $\pi^{\prime}(\delta)$

Proof Overview (SPN \& AES)

Proof Overview（SPN \＆AES）

fixed $\delta \neq 0 \quad \Longrightarrow \quad \mathrm{H}_{\infty}\left(\delta^{\prime}\right)=b-1$

Proof Overview (SPN \& AES)

$$
\mathrm{H}_{\infty}(\delta) \geq b-1
$$

$$
\Longrightarrow
$$

???

Proof Overview (SPN \& AES)

Extraction Lemma

$$
\mathrm{H}_{\infty}(\delta) \geq b-1 \quad \Longrightarrow \quad \delta^{\prime} \text { close to uniform }
$$

Proof Overview (SPN \& AES)

Extraction Lemma

$$
\mathrm{H}_{\infty}(\delta) \geq b-1 \quad \Longrightarrow \quad \delta^{\prime} \text { close to uniform }
$$

Proved by Fourier analysis

Proof Overview (SPN \& AES)

Extraction Lemma

$$
\mathrm{H}_{\infty}(\delta) \geq b-1 \quad \Longrightarrow \quad \delta^{\prime} \text { close to uniform }
$$

Proved by Fourier analysis (full version) Proved by collision probability

Proof Overview (SPN \& AES)

Extraction Lemma

$\forall i \mathrm{H}_{\infty}\left(\delta_{i}\right) \geq b-1 \quad \Longrightarrow \quad\left(\delta_{1}^{\prime}, \ldots, \delta_{k}^{\prime}\right)$ close to uniform

[^1]
Proof Overview (SPN \& AES)

Extraction Lemma

$\forall i \mathrm{H}_{\infty}\left(\delta_{i}\right) \geq b-1 \quad \Longrightarrow \quad\left(\delta_{1}^{\prime}, \ldots, \delta_{k}^{\prime}\right)$ close to uniform

> Proved by Fourier analysis (full version) Proved by collision probability

Proof Overview (SPN \& AES)

Extraction Lemma

$\forall i \mathrm{H}_{\infty}\left(\delta_{i}\right) \geq b-1 \quad \Longrightarrow \quad\left(\delta_{1}^{\prime}, \ldots, \delta_{k}^{\prime}\right)$ close to uniform
$\mathrm{H}_{\infty}\left(\left\{\delta_{i}\right\}_{i \in S}\right) \geq(b-1) \cdot|S|$
for any subset $S \subseteq[k]$
$\Longrightarrow\left(\delta_{1}^{\prime}, \ldots, \delta_{k}^{\prime}\right)$ very close to uniform

Proved by Fourier analysis (full version) Proved by collision probability

Proof Overview (SPN \& AES)

Extraction Lemma

$$
\begin{gathered}
\forall i \mathrm{H}_{\infty}\left(\delta_{i}\right) \geq b-1 \\
\mathrm{H}_{\infty}\left(\left\{\delta_{i}\right\}_{i \in S}\right) \geq(b-1) \cdot|S| \\
\quad \text { for any subset } S \subseteq[k]
\end{gathered} \Longrightarrow \mathrm{SD}\left(\left(\delta_{1}^{\prime}, \ldots, \delta_{k}^{\prime}\right), \text { uniform }\right) \leq \sqrt{\frac{2^{k}-1}{2^{b}}}
$$

Proved by Fourier analysis (full version) Proved by collision probability

Proof Overview (SPN \& AES)

Proof Overview (SPN \& AES)

Proof Overview (SPN \& AES)

$\xrightarrow{\text { w.l.o.g. }} \delta_{1,1} \neq 0$

Proof Overview (SPN \& AES)

$\xrightarrow{\text { w.l.o.g. }} \delta_{1,1} \neq 0 \Longrightarrow \mathrm{H}_{\infty}\left(\delta_{1,1}^{\prime}\right)=b-1$

Proof Overview (SPN \& AES)

$$
\xrightarrow{\text { w.l.o.g. }} \delta_{1,1} \neq 0 \Longrightarrow H_{\infty}\left(\delta_{1,1}^{\prime}\right)=b-1 \xrightarrow{(\star)}{ }_{H_{\infty}\left(\delta_{2, i}\right) \geq b-1}^{\forall i}
$$

Proof Overview (SPN \& AES)

$$
\begin{aligned}
& \xrightarrow{\text { w.lo.g. }} \delta_{1,1} \neq 0 \Rightarrow \mathrm{H}_{\infty}\left(\delta_{1,1}^{\prime}\right)=b-1 \xrightarrow{(\star)} \mathrm{H}_{\infty}\left(\delta_{2, i}\right) \geq b-1 \xrightarrow{\forall i} \xrightarrow{\begin{array}{l}
\text { extraction } \\
\text { lemma }
\end{array}} \begin{array}{c}
\left(\delta_{2,1}^{\prime}, \ldots, \delta_{2, k}^{\prime}\right) \\
\text { close to uniform }
\end{array} \\
& S D=\sqrt{\frac{2^{k}}{2^{b}}}+O\left(\frac{k}{2^{b}}\right)
\end{aligned}
$$

Proof Overview（SPN \＆AES）

$\left.\xrightarrow{\text { w．l．o．g．}} \delta_{1,1} \neq 0 \Rightarrow H_{\infty}\left(\delta_{1,1}^{\prime}\right)=b-1 \xrightarrow{(\star)} H_{\infty}\left(\delta_{2, i}\right) \geq b-1 \xrightarrow{\forall i} \xrightarrow{\substack{\text { extraction }}} \xrightarrow{\substack{\text { lemma }}} \begin{array}{c}\left(\delta_{2,1,1}^{\prime}, \ldots, \delta_{2, k}^{\prime}\right) \\ \text { close to uniform } \\ \text { SD }\end{array}\right)$

Proof Overview (SPN \& AES)

Proof Overview (SPN \& AES)

Proof Overview (SPN \& AES)

Proof Overview (SPN \& AES)

Our Results (SPN \& AES)

2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent. 3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.

Our Results (SPN \& AES)

2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent. 3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.

6 -round AES is 0.472 -close to 2 -wise independent.

Our Results (KAC)
r-round $\operatorname{KAC}\left(\pi_{1}, \ldots, \pi_{r}\right)$ is close to $(r-o(r))$-wise indp for most π_{1}, \ldots, π_{r}

Our Results (SPN \& AES)
2-round SPN is $\left(\frac{4 k}{2^{b}}+\sqrt{\frac{2^{k}}{2^{b}}}\right)$-close to 2 -wise independent.
3 -round SPN is $\left(\frac{8 k}{2^{b}}+\sqrt{\frac{k}{2^{b}}}\right)$-close to 2 -wise independent.
6 -round AES is 0.472 -close to 2 -wise independent.
－Amplify independence like what we did in KAC －3－wise independence of a concrete cipher
－The role of key scheduling
－Analysis of other concrete cipher design
－e．g．add－rotate－xor（ARX）cipher
－The relationship between t－wise independent and other class（es）of attack

[^0]: +

[^1]: Proved by Fourier analysis (full version) Proved by collision probability

