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Block
Cipher

key

n-bit input n-bit output

ε-close to t-wise Independence

∀input1, . . . , inputt
StatisticalDistance((output1, . . . , outputt), uniform) ≤ ε

Feasible when |key| ≥ t · n e.g. assume independent round keys

Statistically indistinguishable with t non-adaptive queries

ε-close to 2-wise indp =⇒

{
MEDP ≤ ε+ 1

2n−1 (differential attack)

CORR ≤ 8ε+ 4
2n (linear attack)
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∗existential result & probabilistic method
∗unlike ideal model results, π1, . . . , πr are completely known to adv
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MPR Amplification Lemma [Maurer-Pietrzak-Renner 07]

F is ε-close to 2-wise indp.
G is δ-close to 2-wise indp.

}
=⇒ F ◦ G is 2εδ-close to 2-wise indp.

Amplifying Our Results

6r -round AES is (2r−10.472r)-close to 2-wise independent.
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Our Results (SPN & AES)

2-round SPN is (4k
2b +

√
2k

2b )-close to 2-wise independent.

3-round SPN is (8k
2b +

√
k
2b )-close to 2-wise independent.

6-round AES is 0.472-close to 2-wise independent.
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Our Results (KAC)

r -round KAC(π1, . . . , πr) is close to (r − o(r))-wise indp
for most π1, . . . , πr
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3-round SPN is (8k
2b +

√
k
2b )-close to 2-wise independent.
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t-wise independence has a really rich body of problems . . .

I Amplify independence like what we did in KAC
- 3-wise independence of a concrete cipher

I The role of key scheduling

I Analysis of other concrete cipher design
- e.g. add–rotate–xor (ARX) cipher

I The relationship between t-wise independent and other class(es) of attack


