The *t*-wise Independence of Substitution-Permutation Networks

Tianren Liu¹ Stefano Tessaro¹ Vinod Vaikuntanathan²

¹University of Washington, Seattle

²MIT, Cambridge

CRYPTO 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 -

Pseudorandom Permutation

practice

Block Cipher

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□ ● ● ● ●

theory

Pseudorandom Permutation

practice

Block Cipher

provable security based on

Feistel [LR88] plus

- one-way functions [GGM84]
- factoring [NR04,...]
- lattice problems [BPR12,...]

practice

Block Cipher

very efficient ciphers (e.g. AES)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

Is AES secure?

Is AES secure?

practice

Block Cipher

very efficient ciphers (e.g. AES)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

practice

Block Cipher

very efficient ciphers (e.g. AES)

theory

Pseudorandom Permutation

provable security based on ...

Feistel [LR88] plus

- one-way functions [GGM84]
- factoring [NR04,...]
- lattice problems [BPR12,...]

Base AES on assumptions?

Idealized model

BKL+12, Ste12, ABD+13, LS14, CS14, CLL+14, HT16, DSSL16, GL15, DKS+17, CDK+18, CL18, WYCD20, etc practice

Block Cipher

very efficient ciphers (e.g. AES)

Cryptanalysis

linear [MY92] and differential [BS91] cryptanalysis, higher-order [Lai94] and truncated [Knu94] differential attacks, impossible differential attacks [Knu98], algebraic attacks [JK97], integral cryptanalysis [KW02], biclique attacks [BKR11], etc

theory

Pseudorandom Permutation

provable security based on ...

Feistel [LR88] plus

- one-way functions [GGM84]
- factoring [NR04,...]
- lattice problems [BPR12,...]

Base AES on assumptions?

Idealized model

BKL+12, Ste12, ABD+13, LS14, CS14, CLL+14, HT16, DSSL16, GL15, DKS+17, CDK+18, CL18, WYCD20, etc practice

Block Cipher

very efficient ciphers (e.g. AES)

Cryptanalysis

linear [MY92] and differential [BS91] cryptanalysis, higher-order [Lai94] and truncated [Knu94] differential attacks, impossible differential attacks [Knu98], algebraic attacks [JK97], integral cryptanalysis [KW02], biclique attacks [BKR11], etc

Provable bounds on the advantage of known attacks

NK95, KMT01, PSC+02, PSLL03, Kel04, KS07, etc

Prove bounds against an attack class

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Prove bounds against an attack class

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

This paper: *t*-wise independence

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

This paper: *t*-wise independence

This paper: *t*-wise independence

t-wise Independence

 $\forall \mathsf{input}_1, \dots, \mathsf{input}_t \\ \mathsf{output}_1, \dots, \mathsf{output}_t \text{ are i.i.d. uniform} \\$

used in [HMMR05, KNR05, BH08, AL13]

ε -close to *t*-wise Independence

$\forall \mathsf{input}_1, \dots, \mathsf{input}_t \\ \mathsf{StatisticalDistance}((\mathsf{output}_1, \dots, \mathsf{output}_t), \mathsf{uniform}) \leq \varepsilon \\$

used in [HMMR05, KNR05, BH08, AL13]

ε -close to *t*-wise Independence

 $\forall \mathsf{input}_1, \dots, \mathsf{input}_t \\ \mathsf{StatisticalDistance}((\mathsf{output}_1, \dots, \mathsf{output}_t), \mathsf{uniform}) \leq \varepsilon \\$

Feasible when $|\text{key}| \ge t \cdot n$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Feasible when $|\text{key}| \ge t \cdot n$ e.g. assume independent round keys

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Feasible when $|\text{key}| \ge t \cdot n$ e.g. assume independent round keys **Statistically indistinguishable** with *t* non-adaptive queries

 ε -close to *t*-wise Independence $\forall input_1, \dots, input_t$ StatisticalDistance((output_1, \dots, output_t), uniform) $\leq \varepsilon$

Feasible when $|\text{key}| \ge t \cdot n$ e.g. assume independent round keys **Statistically indistinguishable** with *t* non-adaptive queries

- 2 non-adaptive queries linear & differential attacks

Feasible when $|\text{key}| \ge t \cdot n$ e.g. assume independent round keys **Statistically indistinguishable** with *t* non-adaptive queries

- 2 non-adaptive queries linear & differential attacks
- 2^d non-adaptive queries order-d differential attacks

$\begin{array}{l} \varepsilon\text{-close to }t\text{-wise Independence} \\ & \forall \mathsf{input}_1,\ldots,\mathsf{input}_t \\ \mathsf{StatisticalDistance}((\mathsf{output}_1,\ldots,\mathsf{output}_t),\mathsf{uniform}) \leq \varepsilon \end{array}$

Feasible when $|\text{key}| \ge t \cdot n$ e.g. assume independent round keys **Statistically indistinguishable** with *t* non-adaptive queries

$$\varepsilon\text{-close to 2-wise indp} \Longrightarrow \begin{cases} \mathsf{MEDP} \leq \varepsilon + \frac{1}{2^n - 1} & \text{(differential attack)} \\ \mathsf{CORR} \leq 8\varepsilon + \frac{4}{2^n} & \text{(linear attack)} \end{cases}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Substitution-Permutation Network (SPN) Advanced Encryption Standard (AES)

<□▶ <□▶ < 三▶ < 三▶ < 三▶ 三三 - のへぐ

Substitution-Permutation Network (SPN) Advanced

Substitution-Permutation Network (SPN) Advanced Encryption Standard (AES)

Substitution-Permutation Network (SPN)

Substitution-Permutation Network (SPN)

Advanced Encryption Standard (AES)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > の < ⊙

r-round KAC(π_1, \ldots, π_r) is not (r + 2)-wise independent

Our Results (KAC)

r-round KAC (π_1, \ldots, π_r) is close to (r - o(r))-wise independent for most π_1, \ldots, π_r

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Our Results (KAC)

r-round KAC (π_1, \ldots, π_r) is close to (r - o(r))-wise independent for most π_1, \ldots, π_r

*existential result & probabilistic method

Our Results (KAC) r-round KAC (π_1, \ldots, π_r) is close to (r - o(r))-wise independent for most π_1, \ldots, π_r

*existential result & probabilistic method *unlike ideal model results, π_1, \ldots, π_r are completely known to adv

6-round AES is 0.472-close to 2-wise independent.

2-round SPN is $(\frac{4k}{2^b} + \sqrt{\frac{2^k}{2^b}})$ -close to 2-wise independent. 3-round SPN is $(\frac{8k}{2^b} + \sqrt{\frac{k}{2^b}})$ -close to 2-wise independent. 6-round AES is 0.472-close to 2-wise independent.

2-round SPN is $(\frac{4k}{2^b} + \sqrt{\frac{2^k}{2^b}})$ -close to 2-wise independent. 3-round SPN is $(\frac{8k}{2^b} + \sqrt{\frac{k}{2^b}})$ -close to 2-wise independent. 6-round AES is 0.472-close to 2-wise independent.

State of the art [Park-Sung-Lee-Lim 03]

4-round AES is pointwise 2^{17} -close to 2-wise independent.

2-round SPN is $(\frac{4k}{2^b} + \sqrt{\frac{2^k}{2^b}})$ -close to 2-wise independent. 3-round SPN is $(\frac{8k}{2^b} + \sqrt{\frac{k}{2^b}})$ -close to 2-wise independent. 6-round AES is 0.472-close to 2-wise independent.

◆□> <圖> < => < => < => < <</p>

2-round SPN is $\left(\frac{4k}{2^b} + \sqrt{\frac{2^k}{2^b}}\right)$ -close to 2-wise independent. 3-round SPN is $\left(\frac{8k}{2^b} + \sqrt{\frac{k}{2^b}}\right)$ -close to 2-wise independent. 6-round AES is 0.472-close to 2-wise independent.

MPR Amplification Lemma [Maurer-Pietrzak-Renner 07]

 $\left. \begin{array}{l} \mathcal{F} \text{ is } \varepsilon \text{-close to 2-wise indp.} \\ \mathcal{G} \text{ is } \delta \text{-close to 2-wise indp.} \end{array} \right\} \implies \mathcal{F} \circ \mathcal{G} \text{ is } 2\varepsilon \delta \text{-close to 2-wise indp.}$

2-round SPN is $(\frac{4k}{2^b} + \sqrt{\frac{2^k}{2^b}})$ -close to 2-wise independent. 3-round SPN is $(\frac{8k}{2^b} + \sqrt{\frac{k}{2^b}})$ -close to 2-wise independent. 6-round AES is 0.472-close to 2-wise independent.

MPR Amplification Lemma [Maurer-Pietrzak-Renner 07]

 $\left. \begin{array}{l} \mathcal{F} \text{ is } \varepsilon \text{-close to 2-wise indp.} \\ \mathcal{G} \text{ is } \delta \text{-close to 2-wise indp.} \end{array} \right\} =$

$$\implies \mathcal{F} \circ \mathcal{G} \text{ is } 2\varepsilon \delta \text{-close to } 2\text{-wise indp.}$$

Amplifying Our Results

6r-round AES is $(2^{r-1}0.472^r)$ -close to 2-wise independent.

Our Results (KAC)

r-round KAC(π_1, \ldots, π_r) is close to (r - o(r))-wise independent for most π_1, \ldots, π_r

Our Results (KAC)

r-round KAC(π_1, \ldots, π_r) is close to (r - o(r))-wise independent for most π_1, \ldots, π_r

Prove by induction

▲□▶▲□▶▲≧▶▲≧▶ 差 のへ⊙

*existential result & probabilistic method on π

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

 $\begin{array}{l} \textbf{pointwise } \varepsilon \text{-close to } t\text{-wise independence} \\ \forall \mathsf{input}_1, \ldots, \mathsf{input}_t, \mathsf{output}_1, \ldots, \mathsf{output}_t \\ \\ \frac{1-\varepsilon}{2^{tn}} \leq \mathsf{Pr}[\mathsf{output}_1, \ldots, \mathsf{output}_t] \leq \frac{1+\varepsilon}{2^{tn}} \end{array}$

 $\begin{array}{l} \textbf{pointwise } \varepsilon \text{-close to } t\text{-wise independence} \\ \forall \mathsf{input}_1, \ldots, \mathsf{input}_t, \mathsf{output}_1, \ldots, \mathsf{output}_t \\ \\ \frac{1 - \varepsilon}{2^{tn}} \leq \mathsf{Pr}[\mathsf{output}_1, \ldots, \mathsf{output}_t] \leq \frac{1 + \varepsilon}{2^{tn}} \end{array}$

*meaningful even if $\varepsilon \gg 1$

pointwise
$$\varepsilon$$
-close to *t*-wise independence
 $\forall input_1, \dots, input_t, output_1, \dots, output_t$
 $\frac{1-\varepsilon}{2^{tn}} \leq \Pr[output_1, \dots, output_t] \leq \frac{1+\varepsilon}{2^{tn}}$

*meaningful even if $\varepsilon \gg 1$

0-round KAC (=one-time pad) is 1-wise indp.

0-round KAC (=one-time pad) is 1-wise indp.
$$\downarrow$$

-round KAC is pointwise $O(n)$ -close to 2-wise indp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

0-round KAC (=one-time pad) is 1-wise indp.

$$\downarrow \downarrow$$

1-round KAC is pointwise $O(n)$ -close to 2-wise indp.
 $\downarrow \downarrow$
2-round KAC is pointwise $O(n^2)$ -close to 3-wise indp.

0-round KAC (=one-time pad) is 1-wise indp.

$$\downarrow$$

1-round KAC is pointwise $O(n)$ -close to 2-wise indp.
 \downarrow
2-round KAC is pointwise $O(n^2)$ -close to 3-wise indp.
 \downarrow
 r -round KAC is pointwise $n^r r^{O(r)}$ -close to $(r + 1)$ -wise indp.

Distance Amplification Lemma

Distance Amplification Lemma

 \mathcal{F} is pointwise ε -close to t-wise indp. & pointwise ε' -close to (t + 1)-wise indp.

number of rounds	0-round	1-round	2-round	3-round	4-round
closeness to 1-wise indp.					
closeness to 2-wise indp.					
closeness to 3-wise indp.					
closeness to 4-wise indp.					
closeness to 5-wise indp.					

number of rounds	0-round	1-round	2-round	3-round	4-round
closeness to 1-wise indp.	0	0	0	0	0
closeness to 2-wise indp.					
closeness to 3-wise indp.					
closeness to 4-wise indp.					
closeness to 5-wise indp.					

Proof Overview (SPN & AES)

Our Results (SPN & AES)

2-round SPN is $(\frac{4k}{2^b} + \sqrt{\frac{2^k}{2^b}})$ -close to 2-wise independent. 3-round SPN is $(\frac{8k}{2^b} + \sqrt{\frac{k}{2^b}})$ -close to 2-wise independent. 6-round AES is 0.472-close to 2-wise independent.

Only the difference matters

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�?

Only the difference matters

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�?

Only the difference matters

 (x'_1, x'_2) is random conditioning on $x'_1 - x'_2 = x_1 - x_2$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > の < ⊙

Only the difference matters

 (x'_1, x'_2) is random conditioning on $x'_1 - x'_2 = x_1 - x_2$

 $SD((y_1, y_2), uniform) = SD(y'_1 - y'_2, uniform)$

S-box: input difference $\delta \mapsto \text{output difference } \delta'$

S-box: input difference $\delta \mapsto \text{output difference } \delta'$

given inputs x_1, x_2 s.t. $x_1 \oplus x_2 = \delta$, what is the distribution of $\delta' = S(x_1 \oplus \text{key}) \oplus S(x_2 \oplus \text{key})$?

S-box: input difference $\delta \mapsto \text{output difference } \delta'$

 $S(x) = x^{-1}$ or $S(x) = x^3$ over \mathbb{F}_{2^b}

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > ― 臣 = ∽ Q Q @

S-box: input difference $\delta \mapsto \text{output difference } \delta'$

$$S(x) = x^{-1}$$
 or $S(x) = x^3$ over \mathbb{F}_{2^b}

Subspace Sampling Lemma

View δ, δ' as dimension-*n* vectors in \mathbb{F}_2^b δ' is a random vector orthogonal to δ !

▲ロト ▲母 ト ▲目 ト ▲目 ト 一日 - のへで

S-box: input difference $\delta \mapsto \text{output difference } \delta'$

$$S(x) = x^{-1}$$
 or $S(x) = x^3$ over \mathbb{F}_{2^b}

Subspace Sampling Lemma

View δ, δ' as dimension-*n* vectors in \mathbb{F}_2^b δ' is a random vector orthogonal to δ !

S-box: input difference $\delta \mapsto \text{output difference } \delta'$

$$S(x) = x^{-1}$$
 or $S(x) = x^3$ over \mathbb{F}_{2^b}

Subspace Sampling Lemma

View δ, δ' as dimension-*n* vectors in \mathbb{F}_2^b δ' is a random vector orthogonal to δ !

Not really true. Actually ...

S-box: input difference $\delta \mapsto \text{output difference } \delta'$

$$S(x) = x^{-1}$$
 or $S(x) = x^3$ over \mathbb{F}_{2^b}

Subspace Sampling Lemma

View δ, δ' as dimension-*n* vectors in \mathbb{F}_2^b δ' is a random vector orthogonal to δ !

Not really true. Actually ...

$$\blacktriangleright \ \delta = \mathbf{0} \implies \delta' = \mathbf{0}$$

S-box: input difference $\delta \mapsto \text{output difference } \delta'$

$$S(x) = x^{-1}$$
 or $S(x) = x^3$ over \mathbb{F}_{2^b}

Subspace Sampling Lemma

View δ, δ' as dimension-*n* vectors in \mathbb{F}_2^b δ' is a random vector orthogonal to δ !

Not really true. Actually ...

$$\blacktriangleright \ \delta = \mathbf{0} \implies \delta' = \mathbf{0}$$

▶ $\exists \pi, \pi' \text{ s.t. } \pi(\delta') \text{ is a random vector orthogonal to } \pi'(\delta)$

S-box: input difference $\delta \mapsto \text{output difference } \delta'$

$$S(x)=x^{-1}$$
 or $S(x)=x^3$ over \mathbb{F}_{2^b}

Subspace Sampling Lemma

View δ, δ' as dimension-*n* vectors in \mathbb{F}_2^b δ' is a random vector orthogonal to δ !

Not really true. Actually ...

$$\blacktriangleright \ \delta = \mathbf{0} \implies \delta' = \mathbf{0}$$

► $\exists \pi, \pi'$ s.t. $\pi(\delta')$ is a random vector orthogonal to $\pi'(\delta)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Proved by Fourier analysis

Proof Overview (SPN & AES)

Extraction Lemma

$$\forall i \; \mathsf{H}_{\infty}(\delta_i) \geq b-1 \qquad \implies \qquad (\delta'_1, \dots, \delta'_k) \; \mathsf{close to uniform}$$

Proved by Fourier analysis (full version) Proved by collision probability

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

Proof Overview (SPN & AES)

Extraction Lemma

$$\forall i \; \mathsf{H}_{\infty}(\delta_i) \geq b-1 \implies (\delta'_1, \dots, \delta'_k) \text{ close to uniform}$$

Proof Overview (SPN & AES)

Proof Overview (SPN & AES)

Extraction Lemma
$$\forall i \; \mathsf{H}_{\infty}(\delta_i) \geq b-1 \implies \mathsf{SD}((\delta'_1, \dots, \delta'_k), \mathsf{uniform}) \leq \sqrt{\frac{2^k-1}{2^b}}$$
 $\mathsf{H}_{\infty}(\{\delta_i\}_{i \in S}) \geq (b-1) \cdot |S|$
for any subset $S \subseteq [k] \implies \mathsf{SD}((\delta'_1, \dots, \delta'_k), \mathsf{uniform}) \leq \sqrt{\frac{k}{2^b}}$

Proof Overview (SPN & AES)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

 $\xrightarrow{\text{w.l.o.g.}} \delta_{1,1} \neq 0 \Longrightarrow \mathsf{H}_{\infty}(\delta'_{1,1}) = b - 1$

▲ロト▲園ト▲園ト▲園ト 園 のへで

▲□▶▲圖▶▲圖▶▲圖▶ ■ のQの

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Our Results (SPN & AES)

2-round SPN is $(\frac{4k}{2^b} + \sqrt{\frac{2^k}{2^b}})$ -close to 2-wise independent. 3-round SPN is $(\frac{8k}{2^b} + \sqrt{\frac{k}{2^b}})$ -close to 2-wise independent.

Our Results (SPN & AES)

2-round SPN is $(\frac{4k}{2^b} + \sqrt{\frac{2^k}{2^b}})$ -close to 2-wise independent. 3-round SPN is $(\frac{8k}{2^b} + \sqrt{\frac{k}{2^b}})$ -close to 2-wise independent. 6-round AES is 0.472-close to 2-wise independent.

Our Results (KAC)

r-round KAC(π_1, \ldots, π_r) is close to (r - o(r))-wise indp for most π_1, \ldots, π_r

Our Results (SPN & AES)

2-round SPN is $(\frac{4k}{2^b} + \sqrt{\frac{2^k}{2^b}})$ -close to 2-wise independent. 3-round SPN is $(\frac{8k}{2^b} + \sqrt{\frac{k}{2^b}})$ -close to 2-wise independent. 6-round AES is 0.472-close to 2-wise independent.

・ロト・「「「・」」、 「」、 「」、 「」、 「」、 「」、 「」、 」、

t-wise independence has a really rich body of problems

- Amplify independence like what we did in KAC
 3-wise independence of a concrete cipher
- The role of key scheduling
- Analysis of other concrete cipher design
 - e.g. add-rotate-xor (ARX) cipher
- ▶ The relationship between *t*-wise independent and other class(es) of attack